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ABSTRACT 
 

A new method that evaluates the execution of robotic operations at the task level is 
proposed. Traditional robot controllers use variety of feedback loops at motion level to 
solve dynamical control and motion level planning problems asssuming that the 
original task plan is never modified. However, a drastical change in the operation 
environment of the robot might as well affect the sequence of tasks to be executed. In 
such a case, modifying motion plan may not be sufficient to adapt to the unexpected 
change in the environment. In this study, a planning environment that allows the 
original task plan to be modified or entirely changed according to the changing 
environmental conditions is proposed. A heuristic approach is taken to decide on 
whether the original plan should be modified or an entirely new plan should be 
generated. A simple case on pick-and-place sequencing of blocks-world is studied to 
demonstrate the idea. 
 

Keywords: Robotics, task planning, feedback, artificial intelligence, replanning, 
learning. 
 

1. INTRODUCTION 
 

The ultimate goal in robotics research is to develop robotic systems that are capable of 
planning and executing tasks that are specified at highest possible level of abstraction. 
For this purpose, a multi-level approach to robotic software architectures is well 
recognized and used [1-4]. In this approach, the complicated structure is divided into 
various layers: At the top most layer, a task planner produces primitive task sequences 
that lead to the completion of the ultimate goal. In the middle, the trajectory or motion 
planner generates the necessary trajectories for the movement of the robot coordinates 
to perform a preplanned primitive task. At the lowest layer, the trajectory controller of 
the robot generates the necessary commands to make the robot track the precomputed 
trajectory in Cartesian coordinates. Various feedback information including the vision, 
position, velocity, force and torque sensors are used at the bottom two layers to let the 
respective controllers execute robust control policies [2]. Figure 1 shows a typical robot 
system. 
 

Although the feedback controls of the bottom two layers produce dependable systems to 
a certain extent, the task planning level is usually developed without such feedback 
from the world model. The lack of such feedback might as well lead to the completion 
of  the execution of the original task plan that might have already become obsolete after 
an unpredictable change in the world model. In such a case, it becomes inevitable to 
modify the original task plan to compensate for the unpredictable change in the world 
model. A simple example of such a situation could be given from pick and place 
sequences operating in blocks-world. What happens if the robot drops an object while 

ISCIS 1999 



 2

Figure 1: A typical robot system. 
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carrying it to complete a task? In such a case, new motion trajectory is only helpful if 
the motion planner receives a modified task plan from the upper layer. 
 
 
 
 
 
 

 
 

 

Developing task planners for robotic tasks is a widely studied area in the robotics 
literature. While the early planners lacked the robustness necessary to make them 
implementable on robots, the recently developed planners attempt to solve many of the 
practical problems. Some of the work such as [5,6] integrates motion planner with the 
controller so that it becomes an investigation/decision component based on the sensory 
measurement. Another group of work addresses the problem of planning under 
changing world conditions [7-9].  In [10-12], a completely operational system for 
mobile robot task planning is developed.  The interleaving technique used in [12] can be 
considered as the modification of the original plan as new tasks are requested from the 
robot.    
 
In this paper, a new architecture for a robotic system that allows replanning under 
changing world conditions is proposed. A case study from blocks-world is given to 
demonstrate the idea. The essential tool is the feedback information supplied to the task 
planner as shown in Figure 2. The planner continuously monitors the world model to 
see if there is an unpredicted change. If not, it continues executing the original plan. If 
there is a change, then the planner stops executing the original task sequence and starts 
a modification algorithm. This is the replanning phase that basically consists of making 
a decision on two alternatives:  
Alternative 1: The first alternative is to generate an intermediary task sequence to 
compensate for the unpredicted change in the world model. That is, a task sequence is 
generated to put the blocks-world to the state right before the unpredicted change. The 
planner then proceeds with the execution of the original plan from the point it had 
stopped while executing.  
Alternative 2: The second alternative is to accept the modified world model as a new 
initial state and generate an entirely new task plan that leads to the goal state. 
 

A composite cost function is used to evaluate two alternatives. Depending on the result, 
a decision is made. The system is not expected to lead to the right decision in the 
beginning however, because of the learning nature of the algorithm, as the unexpected 
change cases build-up, the system makes use of the accumulated knowledge and makes 
a decision that optimizes the case according to the selected cost function. 
 
The paper is organized as follows: In Section 2, the new architecture is introduced and 
the algorithmic details are given to demonstrate the idea in a blocks-world  pick-and-
place application. In Section 3, the details of the case are introduced, simulation results 
on the blocks-world pick-and-place case are given and performance issues are 
discussed. Finally, in Section 4, concluding remarks are made. 
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2. THE PROPOSED ARCHITECTURE 
 

Since feedback controls of the motion planning and control layers are insufficient for 
producing dependable systems, a task planning level supplied with feedback is 
proposed. A task planning level receiving feedback becomes the decision component in 
the robotics software architecture and in case of an unexpected event, it obtains the 
necessary information to decide whether a task plan will lead to completion or not. If 
task planning level decides that current task plan will not lead to completion, then it can 
either modify or completely change the current task plan. 
 

For the purpose of demonstrating such a system, a  task planner for a pick-and-place 
case in blocks-world  has been written. The task planner receives simulated world 
model states as feedback instead of real world model states from the vision system since 
studies on vision system are still being carried out (obtaining the images of the world 
model by  the vision system and interpreting the images).  
 

The task planner begins execution by generating a task plan by a task plan generation 
module (Figure 3). Later task planner monitors the world model continuously by a 
monitoring module to detect any possible unexpected changes in the world model while 
the task plan is in execution. If the task planner detects an unexpected change in the 
world model such as an unexpected change in location of objects at any time during the 
execution of the task plan, it stops the execution of the current task plan and calls the 
replanning module to cope up with the unexpected situation. The replanning module has 
two alternatives mentioned in Section 1 to choose from. 
 
 

At the beginning, the replanner might not give the right decisions since the threshold 
has been assigned a value randomly. As time passes, more and more unexpected events 
occur and the replanning module tries to obtain a threshold value which leads to better 
decisions. The replanner adjusts the value of the threshold by making use of the 
knowledge of the previous unexpected events. This knowledge is kept in a cost table in 
form of costs (Figure 4).  A cost table is a two dimensional array with dimensions P x 
Q. P is the maximum value of a distance metric and Q is the maximum number of 
unexpected events allowed for a distance metric. The cost table is organized as columns 
which contain costs for different distance metric values. Threshold might be assigned a 
value such that 0 < threshold_value < P.  
 
When an unexpected event occurs, a distance metric is calculated for the unexpected 
event. This distance metric is compared with the currently assigned value of threshold. 
If the calculated distance metric is smaller than the value of the threshold, then 
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Figure 2: A robot system where the feedback information is supplied to  
the task planner.
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Figure 3: General framework for the task planner with vision feedback. 
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Figure 4: An example cost table  
Threshold value

 alternative 2 applied 

alternative 1 is executed, else alternative 2 is executed. In either case, the cost table is 
updated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The replanner doesn’t adjust the value of the threshold until the cost table is entirely 
filled in. When it is entirely filled in, the averages of each column in the cost table are 
obtained. An abnormal increase or a decrease between the averages of the threshold 
column and the column preceding it means that the threshold value needs an 
improvement. An improvement is made by increasing or decreasing the value of the 
threshold by an amount. A heuristic is used to decide on an increase or a decrease. The 
heuristic is that the threshold will be increased (shift right in the cost table) if there is an 
abnormal increase and will be decreased ( shift left in the cost table) if there is an 
abnormal decrease (Figure 5 and Figure 6).  
 

There is a value range where the threshold is stabilized and adjust operations are 
continued until the threshold value is in that range. If the initial value of the threshold is 
small, as learning proceeds, the threshold value increases to this stability region and 
stays there. Detecting a decrease means threshold value should be changed back to the 
previous value where there is an increase. The increases get smaller for increasing 
values of threshold so the increase detected before a decrease will probably be the 
smallest increase of all. The cost table is emptied after each adjust operation so that it 
can be used for accumulating costs of forthcoming unexpected happenings of the 
following adjust attemps. 
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Figure 5: Replanner Algorithm 

Replanner Algorithm 
 
1. Calculate a distance metric for the unexpected happening. 
2. If the distance metric is smaller than the threshold value then execute alternative 1 else 

execute alternative 2. 
3. Update the cost table. 
4. If cost table is full, adjust the value of threshold and clear the table. 
5. Go to step 1. 

Figure 6: Adjust_Threshold Algorithm 

Adjust_Threshold Algorithm 
 
1. Calculate the average cost for each column of the cost table and keep the averages in an 

average-cost array. 
2. Check if an abnormal increase or decrease between the averages of threshold column and 

the column  preceding it is detected. 
3. If yes 

If this is an increase, shift threshold value to the right by stepsize. 
If this is a decrease, shift threshold value to the left by stepsize. 
Empty the cost table to accumulate new cost values with the new threshold value. 

4. If no  
If an increase was detected previously  shift threshold value to the right by stepsize. 
If a decrease was detected previously do nothing. This is the stabilized threshold value. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

3. A CASE STUDY 
 

A case study to the unexpected changes in the world model  is the mixed pieces 
problem. The problem is stated as follows: There is a N X N board on which 
there are N2 / 2 pieces placed on different cells of the board. There are m  
different pieces and there are nj items of each different piece where  j: 1 ≤ j ≤ m 
and ∑nj = N2 / 2. The pieces are transferred from their positions in initial state to their 
final positions in final state by a robot arm. While this transfer occurs, the pieces on the 
board are mixed up (both the pieces in initial state and the pieces which have been 
carried to final positions from initial state might be mixed up). Our problem now is to 
find some optimal path to bring the mixed state of the board to the final state. 
 

A composite cost function for a path is defined as follows: 
 

Cp = c1 Tp + c2 Ep where  
c1, c2 constants, 
TP : The run-time to generate a new task plan for that path, 
Ep : The energy to be spent by the robot arm to execute the task plans on that path. 
 

Then, the costs of Alternative 1 and Alternative 2 are: 
C1 = c1 T1 + c2 E1 
C2 = c1 T2 + c2 E2 where  
T1, T2 are the run times of generating a new task plan for Alternative 1 and 
Alternative 2 respectively. 
 E1, E2 are the energes to be spent by the robot arm while executing the task plans 
generated for Alternative 1 and Alternative 2 respectively. 
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 White group Black group 
Item name # of items  Item name # of items 

  V 4  V  4 
  S 4  S  4 
  A 8  A  8 
  K 16  K  16 
  F 16  F  16 

P 16 P 16

A board with dimensions 16 X 16 is used. There are two 
group of pieces (white and black) and there are 6 different 
pieces in each group. Table 1 shows the number of pieces 
for each type (Letters represent each item in each group). 
 

The cost table is a 80 X 5 table.  The distance metric used for this problem is the 
number of misplaced pieces on board This number indicates the amount of change 
between the state right before the change and right after the change. If this number is 
low enough then it is better to use Alternative 1. The distance metric is assumed to be in 
the range 0  < dm < 80.  Cost values of 5 unexpected happenings are accumulated  in a 
distance metric column. 400 unexpected happenings should have occurred to fill a cost 
table completely. 
 

       
 
 
 

 

 
 

 
 
 
Table 1: The number of pieces for each type. 

 
As indicated in Adjust_Threshold Algorithm, when an unexpected event occurs 
algorithm will check if the table is entirely full. If it is, then it will look for an abnormal 
increase or decrease between the average cost value of threshold column and the 
column preceding it. An abnormal increase is assumed to have a value more than 1 and 
an abnormal decrease is assumed to have a value less  than –1. For each increase, 
threshold will be incremented by 10 and for each decrease, threshold will be 
decremented by 10. The threshold is assigned value 5 at the beginning of the program. 
Table 2 shows the threshold values and respective changes at these thresholds. 
 
 
 
 
 
 
 
 

 
Table 2: Abrupt change of costs at 5 thresholds. 
 

Figure 9-13 are the graphs of cost table column averages at different thresholds. The 
values below the threshold are Alternative 1 values while the values above threshold are 
Alternative 2 values. It is expected that the area under the graph of a cost table column 
averages will be less than  the area of a graph which composes of only Alternative 2 
values. This is based on the idea that Alternative 1 values need less effort at low 
distance metric values than Alternative 2 values. That is, it is sometimes better to 
modify a plan rather than throwing it away and forming a completely new plan. This 
expectation comes out to be true when the areas under graphs in Figure 13 and Figure 
14 are calculated. Values of 1281 and 1336 are obtained for Figure 13 and Figure 14 
respectively. Executing alternative 1 for low values of distance metric and alternative 2 

Threshold  Change 
5 +3.16 
15 +7.68 
25 +7.38 
35 +5.37 
45 -3.08 
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for high values of distance metric gives a less area when compared with executing 
alternative 2 for all distance metrics. The difference between the two becomes higher at 
stabilized value of the threshold. The area under the graph of cost table column averages 
in Figure 12 at stabilized threshold value of  35 is 1522 while this value is 1602 if the 
graph is the graph of direct path for every distance metric. The difference between the 
two values is approximately 80 which is a considerable amount. It should be noted that 
the threshold value is stabilized after 5 adjustments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Cost table column averages for  threshold 15. 
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Figure 9: Cost table column averages for threshold 5.
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Figure 13: Cost table column averages for  threshold  45.
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Figure 14: Alternative 2 column averages for all 
distance metrics in case of Figure 13. 
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Figure 12: Cost table column averages for threshold 35. 
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Figure 11: Cost table column averages for  threshold 25. 
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4. CONCLUSION 
 

In this study, a new method is proposed to deal with uncertainty in robotic 
environments. The method is based on the supply of feedback information about the 
world model to the task level of the robot software. The task planner’s evaluation of any 
unexpected change leads to generation of new plans that yield optimal operation of the 
robot system. 
 

Current work is progressing in two different directions. The first direction is the 
development of a general task planning environment that is suitable for the replanning 
paradigm. This involves variety of topics in world modelling and task representation in 
addition to the architecture introduced in this paper. The second direction is the 
integration of the vision system with the planner. Presently, the vision and robot system 
are both operational in our laboratory and their integration at task level is under study.  
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