
 1

A NEW METHODOLOGY FOR
DEALING WITH UNCERTAINTY IN ROBOTIC

TASKS

Şule Yıldırım and Turhan Tunalı
yildirim, tunali@ube.ege.edu.tr

International Computer Institute, Ege University
Bornova, İzmir, 35100, TURKEY.

ABSTRACT

A new method that evaluates the execution of robotic operations at the task level is
proposed. Traditional robot controllers use variety of feedback loops at motion level to
solve dynamical control and motion level planning problems asssuming that the
original task plan is never modified. However, a drastical change in the operation
environment of the robot might as well affect the sequence of tasks to be executed. In
such a case, modifying motion plan may not be sufficient to adapt to the unexpected
change in the environment. In this study, a planning environment that allows the
original task plan to be modified or entirely changed according to the changing
environmental conditions is proposed. A heuristic approach is taken to decide on
whether the original plan should be modified or an entirely new plan should be
generated. A simple case on pick-and-place sequencing of blocks-world is studied to
demonstrate the idea.

Keywords: Robotics, task planning, feedback, artificial intelligence, replanning,
learning.

1. INTRODUCTION

The ultimate goal in robotics research is to develop robotic systems that are capable of
planning and executing tasks that are specified at highest possible level of abstraction.
For this purpose, a multi-level approach to robotic software architectures is well
recognized and used [1-4]. In this approach, the complicated structure is divided into
various layers: At the top most layer, a task planner produces primitive task sequences
that lead to the completion of the ultimate goal. In the middle, the trajectory or motion
planner generates the necessary trajectories for the movement of the robot coordinates
to perform a preplanned primitive task. At the lowest layer, the trajectory controller of
the robot generates the necessary commands to make the robot track the precomputed
trajectory in Cartesian coordinates. Various feedback information including the vision,
position, velocity, force and torque sensors are used at the bottom two layers to let the
respective controllers execute robust control policies [2]. Figure 1 shows a typical robot
system.

Although the feedback controls of the bottom two layers produce dependable systems to
a certain extent, the task planning level is usually developed without such feedback
from the world model. The lack of such feedback might as well lead to the completion
of the execution of the original task plan that might have already become obsolete after
an unpredictable change in the world model. In such a case, it becomes inevitable to
modify the original task plan to compensate for the unpredictable change in the world
model. A simple example of such a situation could be given from pick and place
sequences operating in blocks-world. What happens if the robot drops an object while

ISCIS 1999

 2

Figure 1: A typical robot system.

 +

sensors

control signal
error

-
Motion
Planner

Task
Planner

task sequence
desired trajectory

Feedback

output
RobotController

carrying it to complete a task? In such a case, new motion trajectory is only helpful if
the motion planner receives a modified task plan from the upper layer.

Developing task planners for robotic tasks is a widely studied area in the robotics
literature. While the early planners lacked the robustness necessary to make them
implementable on robots, the recently developed planners attempt to solve many of the
practical problems. Some of the work such as [5,6] integrates motion planner with the
controller so that it becomes an investigation/decision component based on the sensory
measurement. Another group of work addresses the problem of planning under
changing world conditions [7-9]. In [10-12], a completely operational system for
mobile robot task planning is developed. The interleaving technique used in [12] can be
considered as the modification of the original plan as new tasks are requested from the
robot.

In this paper, a new architecture for a robotic system that allows replanning under
changing world conditions is proposed. A case study from blocks-world is given to
demonstrate the idea. The essential tool is the feedback information supplied to the task
planner as shown in Figure 2. The planner continuously monitors the world model to
see if there is an unpredicted change. If not, it continues executing the original plan. If
there is a change, then the planner stops executing the original task sequence and starts
a modification algorithm. This is the replanning phase that basically consists of making
a decision on two alternatives:
Alternative 1: The first alternative is to generate an intermediary task sequence to
compensate for the unpredicted change in the world model. That is, a task sequence is
generated to put the blocks-world to the state right before the unpredicted change. The
planner then proceeds with the execution of the original plan from the point it had
stopped while executing.
Alternative 2: The second alternative is to accept the modified world model as a new
initial state and generate an entirely new task plan that leads to the goal state.

A composite cost function is used to evaluate two alternatives. Depending on the result,
a decision is made. The system is not expected to lead to the right decision in the
beginning however, because of the learning nature of the algorithm, as the unexpected
change cases build-up, the system makes use of the accumulated knowledge and makes
a decision that optimizes the case according to the selected cost function.

The paper is organized as follows: In Section 2, the new architecture is introduced and
the algorithmic details are given to demonstrate the idea in a blocks-world pick-and-
place application. In Section 3, the details of the case are introduced, simulation results
on the blocks-world pick-and-place case are given and performance issues are
discussed. Finally, in Section 4, concluding remarks are made.

 3

2. THE PROPOSED ARCHITECTURE

Since feedback controls of the motion planning and control layers are insufficient for
producing dependable systems, a task planning level supplied with feedback is
proposed. A task planning level receiving feedback becomes the decision component in
the robotics software architecture and in case of an unexpected event, it obtains the
necessary information to decide whether a task plan will lead to completion or not. If
task planning level decides that current task plan will not lead to completion, then it can
either modify or completely change the current task plan.

For the purpose of demonstrating such a system, a task planner for a pick-and-place
case in blocks-world has been written. The task planner receives simulated world
model states as feedback instead of real world model states from the vision system since
studies on vision system are still being carried out (obtaining the images of the world
model by the vision system and interpreting the images).

The task planner begins execution by generating a task plan by a task plan generation
module (Figure 3). Later task planner monitors the world model continuously by a
monitoring module to detect any possible unexpected changes in the world model while
the task plan is in execution. If the task planner detects an unexpected change in the
world model such as an unexpected change in location of objects at any time during the
execution of the task plan, it stops the execution of the current task plan and calls the
replanning module to cope up with the unexpected situation. The replanning module has
two alternatives mentioned in Section 1 to choose from.

At the beginning, the replanner might not give the right decisions since the threshold
has been assigned a value randomly. As time passes, more and more unexpected events
occur and the replanning module tries to obtain a threshold value which leads to better
decisions. The replanner adjusts the value of the threshold by making use of the
knowledge of the previous unexpected events. This knowledge is kept in a cost table in
form of costs (Figure 4). A cost table is a two dimensional array with dimensions P x
Q. P is the maximum value of a distance metric and Q is the maximum number of
unexpected events allowed for a distance metric. The cost table is organized as columns
which contain costs for different distance metric values. Threshold might be assigned a
value such that 0 < threshold_value < P.

When an unexpected event occurs, a distance metric is calculated for the unexpected
event. This distance metric is compared with the currently assigned value of threshold.
If the calculated distance metric is smaller than the value of the threshold, then

Motion
Planner

sensors

Feedback

error

Feedback

RobotControllerTask
Planner

task sequence
desired trajectory

output

control signal

 +
-

Figure 2: A robot system where the feedback information is supplied to
the task planner.

 4

Figure 3: General framework for the task planner with vision feedback.

Task Planner Algorithm

1 Generate a task plan for the
given task and put it into
execution.

2. Continuously monitor world
model to detect an unexpected
change. If there is an unexpected
change, call replanning module.

Vision
System

Task

planMonitoring

Module

Replanning
Module

Task Plan
Generation Module

Task planner

Robot

alternative 1 applied
Distance metric values

1 2 3 4 5 6 7 8 9
C(1,1) C(2,1) C(3,1) C(4,1) C(5,1) C(6,1) C(7,1) C(8,1) C(9,1)
C(1,2)
.
.
C(1,n) C(9,n)

Figure 4: An example cost table
Threshold value

 alternative 2 applied

alternative 1 is executed, else alternative 2 is executed. In either case, the cost table is
updated.

The replanner doesn’t adjust the value of the threshold until the cost table is entirely
filled in. When it is entirely filled in, the averages of each column in the cost table are
obtained. An abnormal increase or a decrease between the averages of the threshold
column and the column preceding it means that the threshold value needs an
improvement. An improvement is made by increasing or decreasing the value of the
threshold by an amount. A heuristic is used to decide on an increase or a decrease. The
heuristic is that the threshold will be increased (shift right in the cost table) if there is an
abnormal increase and will be decreased (shift left in the cost table) if there is an
abnormal decrease (Figure 5 and Figure 6).

There is a value range where the threshold is stabilized and adjust operations are
continued until the threshold value is in that range. If the initial value of the threshold is
small, as learning proceeds, the threshold value increases to this stability region and
stays there. Detecting a decrease means threshold value should be changed back to the
previous value where there is an increase. The increases get smaller for increasing
values of threshold so the increase detected before a decrease will probably be the
smallest increase of all. The cost table is emptied after each adjust operation so that it
can be used for accumulating costs of forthcoming unexpected happenings of the
following adjust attemps.

 5

Figure 5: Replanner Algorithm

Replanner Algorithm

1. Calculate a distance metric for the unexpected happening.
2. If the distance metric is smaller than the threshold value then execute alternative 1 else

execute alternative 2.
3. Update the cost table.
4. If cost table is full, adjust the value of threshold and clear the table.
5. Go to step 1.

Figure 6: Adjust_Threshold Algorithm

Adjust_Threshold Algorithm

1. Calculate the average cost for each column of the cost table and keep the averages in an

average-cost array.
2. Check if an abnormal increase or decrease between the averages of threshold column and

the column preceding it is detected.
3. If yes

If this is an increase, shift threshold value to the right by stepsize.
If this is a decrease, shift threshold value to the left by stepsize.
Empty the cost table to accumulate new cost values with the new threshold value.

4. If no
If an increase was detected previously shift threshold value to the right by stepsize.
If a decrease was detected previously do nothing. This is the stabilized threshold value.

3. A CASE STUDY

A case study to the unexpected changes in the world model is the mixed pieces
problem. The problem is stated as follows: There is a N X N board on which
there are N2 / 2 pieces placed on different cells of the board. There are m
different pieces and there are nj items of each different piece where j: 1 ≤ j ≤ m
and ∑nj = N2 / 2. The pieces are transferred from their positions in initial state to their
final positions in final state by a robot arm. While this transfer occurs, the pieces on the
board are mixed up (both the pieces in initial state and the pieces which have been
carried to final positions from initial state might be mixed up). Our problem now is to
find some optimal path to bring the mixed state of the board to the final state.

A composite cost function for a path is defined as follows:

Cp = c1 Tp + c2 Ep where
c1, c2 constants,
TP : The run-time to generate a new task plan for that path,
Ep : The energy to be spent by the robot arm to execute the task plans on that path.

Then, the costs of Alternative 1 and Alternative 2 are:
C1 = c1 T1 + c2 E1
C2 = c1 T2 + c2 E2 where
T1, T2 are the run times of generating a new task plan for Alternative 1 and
Alternative 2 respectively.
 E1, E2 are the energes to be spent by the robot arm while executing the task plans
generated for Alternative 1 and Alternative 2 respectively.

 6

 White group Black group
Item name # of items Item name # of items

 V 4 V 4
 S 4 S 4
 A 8 A 8
 K 16 K 16
 F 16 F 16

P 16 P 16

A board with dimensions 16 X 16 is used. There are two
group of pieces (white and black) and there are 6 different
pieces in each group. Table 1 shows the number of pieces
for each type (Letters represent each item in each group).

The cost table is a 80 X 5 table. The distance metric used for this problem is the
number of misplaced pieces on board This number indicates the amount of change
between the state right before the change and right after the change. If this number is
low enough then it is better to use Alternative 1. The distance metric is assumed to be in
the range 0 < dm < 80. Cost values of 5 unexpected happenings are accumulated in a
distance metric column. 400 unexpected happenings should have occurred to fill a cost
table completely.

Table 1: The number of pieces for each type.

As indicated in Adjust_Threshold Algorithm, when an unexpected event occurs
algorithm will check if the table is entirely full. If it is, then it will look for an abnormal
increase or decrease between the average cost value of threshold column and the
column preceding it. An abnormal increase is assumed to have a value more than 1 and
an abnormal decrease is assumed to have a value less than –1. For each increase,
threshold will be incremented by 10 and for each decrease, threshold will be
decremented by 10. The threshold is assigned value 5 at the beginning of the program.
Table 2 shows the threshold values and respective changes at these thresholds.

Table 2: Abrupt change of costs at 5 thresholds.

Figure 9-13 are the graphs of cost table column averages at different thresholds. The
values below the threshold are Alternative 1 values while the values above threshold are
Alternative 2 values. It is expected that the area under the graph of a cost table column
averages will be less than the area of a graph which composes of only Alternative 2
values. This is based on the idea that Alternative 1 values need less effort at low
distance metric values than Alternative 2 values. That is, it is sometimes better to
modify a plan rather than throwing it away and forming a completely new plan. This
expectation comes out to be true when the areas under graphs in Figure 13 and Figure
14 are calculated. Values of 1281 and 1336 are obtained for Figure 13 and Figure 14
respectively. Executing alternative 1 for low values of distance metric and alternative 2

Threshold Change
5 +3.16
15 +7.68
25 +7.38
35 +5.37
45 -3.08

 7

for high values of distance metric gives a less area when compared with executing
alternative 2 for all distance metrics. The difference between the two becomes higher at
stabilized value of the threshold. The area under the graph of cost table column averages
in Figure 12 at stabilized threshold value of 35 is 1522 while this value is 1602 if the
graph is the graph of direct path for every distance metric. The difference between the
two values is approximately 80 which is a considerable amount. It should be noted that
the threshold value is stabilized after 5 adjustments.

Figure 10: Cost table column averages for threshold 15.

2

0

10
20

30
40

50

1 10 19 28 37 46 55 64 73

distance m etric

co
st

s

Figure 9: Cost table column averages for threshold 5.

1

0
5

10
15
20
25
30

1 10 19 28 37 46 55 64 73
distance metric

co
st

s

Figure 13: Cost table column averages for threshold 45.

5

0
5

10
15
20
25
30

1 10 19 28 37 46 55 64 73

dis tance m e tric

co
st

s

Figure 14: Alternative 2 column averages for all
distance metrics in case of Figure 13.

direct pa th a t threshold 45

0
5

10
15
20
25
30

1 10 19 28 37 46 55 64 73

dis tance m e tr ic

co
st

s

Figure 12: Cost table column averages for threshold 35.

4

0
10
20
30
40
50

1 10 19 28 37 46 55 64 73

distance m etric

co
st

s

Figure 11: Cost table column averages for threshold 25.

3

0

10

20

30

40

1 10 19 28 37 46 55 64 73

distance metric

co
st

s

 8

4. CONCLUSION

In this study, a new method is proposed to deal with uncertainty in robotic
environments. The method is based on the supply of feedback information about the
world model to the task level of the robot software. The task planner’s evaluation of any
unexpected change leads to generation of new plans that yield optimal operation of the
robot system.

Current work is progressing in two different directions. The first direction is the
development of a general task planning environment that is suitable for the replanning
paradigm. This involves variety of topics in world modelling and task representation in
addition to the architecture introduced in this paper. The second direction is the
integration of the vision system with the planner. Presently, the vision and robot system
are both operational in our laboratory and their integration at task level is under study.

REFERENCES

[1] K. S. Fu, R. C. Gonzales, C. S. G. Lee, “ Control, Sensing, Vision, and
Intelligence”, Mc-Graw-Hill, 1987.

[2] M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, M. T. Mason, “Robot
Motion: Planning and Control ”, MIT Press, 1986.

[3] T. Tunalı and G. S. Güler, “A Hierarchical Planner for Robot Tasks and Motion
Control”, Proc. IEEE workshop on Intelligent Motion Control, Istanbul,
TURKEY, August 1990.

[4] G. S. Güler and T. Tunalı, “An Object-Oriented Approach to the Relational
Representation of the Robotic Tasks and Workcells”, Proc. IEEE workshop on
Intelligent Motion Control, Istanbul, TURKEY, August 1990.

[5] N. Xi, T. Tarn, A. K. Bejczy, “An Intelligent Planning and Control for Multirobot
Coordination: An Event-Based Approach”, IEEE Transactions on Robotics and
Automation, June 1996, vol 12, no. 3 .

[6] C. Tung and A. C. Kak, “Integrating Sensing, Task Planning, and Execution for
Robotic Assembly”, IEEE Transactions on Robotics and Automation, vol. 12,
no. 2, pp. 187-201, April 1996.

[7] E. M. Atkins, E. H. Durfee and K. G. Shin, “Detecting and reacting to unplanned-for
world states”, AAAI Fall Symposium “Plan Execution: Problems and Issues”,
pp. 1-7, 1996.

[8] S. W. Bennet, G. F. DeJong, “Real World Robotics: Learning to plan for robust
execution. Machine Learning”, Machine Learning, vol 23, pp. 121-161, 1996.

[9] D. Borrajo, M. Veloso, “Incremental learning of control knowledge for
improvement of planning efficiency and plan quality”, AAAI Fall Symposium
“Planning and Learning: On to Real Applications”, pp. 5-9, 1994.

[10] Y. Gil, “Acquiring domain knowledge for planning by experimentation”, Ph.D
Thesis, School of Computer Science, Carneige Mellon University, 1992.

[11] R. Goodwin, “Meta-Level Control for Decision-Theoretic Planners”, Ph.D Thesis,
School of Computer Science, Carneige Mellon University, 1996.

[12] K. Z. Haigh, “Situation-Dependent Learning for
Interleaved Planning and Robot Execution”, Ph.D Thesis,
School of Computer Science, Carneige Mellon University,
1998.

