

A PROPOSAL FOR A ROBOTIC
PLANNING/REPLANNING FRAMEWORK

Şule Yıldırım∗ and Turhan Tunalı∗

ABSTRACT
In this study, a new robotic task replanning architecture for a class of problems
is proposed. The architecture supports replanning in deliberation layer in
addition to the unexpected event handling of low level behaviours. The replanning
mechanism is supported by vision feedback to update the internal state of the
system at certain intervals for exegoneous event detection. The expected state is
known after each plan step execution. High level plans are compiled into low-
level behaviours for execution and some unexpected events that do not need
deliberation layer interference are handled with low-level behaviours supported
by sensory feedback.

Keywords: robotics, unstructured robotic environments, operation safety and
efficiency, planning, replanning, robotic architectures, vision feedback.

1. INTRODUCTION

Robotics research is being done on building up robust robot systems for several
decades by now. However, the state of art shows us that the deliberation side of
these architectures needs more attention for increasing its contibution in
exegoneous event handling. Although using low level behaviours as in
Subsumption Achitecture [2] for unexpected event handling solves many
problems, the opportunities that might arise with using high level behaviours need
to be considered. The architecture in this study is an integrated deliberative
planning and replanning system that also enables learning from past experience.
The learning side of the system comes from the fact that it stores previous plans
by indexing into the plan database by using initial and goal state pairs. A function
defined takes initial and goal states as inputs and produces an index into the plan
database for a previously stored plan. The other side of learning is to use a vision
system that updates the world model after each execution step. This is currently
possible by taking robot arm away until the camera grabs an image of the
environment and proccesses the image for an unexpected event detection and goes
to the pose of the most recent move to continue with the rest of the plan if there’s
not something unexpected.

Today, most of the studies concentrate on robots getting the best understanding of
the world by forming world maps at the begining of the system execution. But it’s
always possible that the environment is dynamic and changing frequently. So the
word “replanning” in our study corresponds to figuring out the next sequence of
actions in case of a world change. Hence, in our study the robot gets the
knowledge of the environment after each execution step to figure out changes.
This aspect can be made continuous depending on how long it takes to process the

∗ International Computer Institute, Ege University, Bornova Izmir Turkey,
 yildirim@ube.ege.edu.tr, Research Assistant, tunali@ube.ege.edu.tr, Professor and Director.

TAINN 2002

image grabbed to get the current world model which will also be called observed
world model.

The architecture to be used in robotics tasks is mostly affected by the type of tasks
the robotic planner is going to produce plans for. However there are studies on
producing domain-independent planners. As a result, the architecture formed in
this study is somewhat dependent on the problems addressed although it has the
fexibility to replace the embedded modules with the new ones that solve other
problems. There are two sources of complexity in planning:

Satisfiability: the difficulty of finding any solution to the planning problem
(regardless of the quality of the solution).
Optimization: the difficulty of finding the optimal solution under a given cost
metric.

In particular, there are many domains in which t

he satisfiability problem is relatively easy and their complexity is dominated by
the optimization problem. For example, there may be many plans that would solve
the problem, so that finding a plan is easy in practice, but the cost of each solution
varies greatly, thus finding the optimal one is computationally hard. We will refer
to these domains as optimization domains. The planner currently used is a means-
ends analysis planner which does heuristic local search. The efficiency of some
other methods in literature for optimal planning will also be tested for the class of
problems in hand. The methods that can be considered are iterative improvement,
variable-depth search, simulated annealing [9] and tabu search [7]. The replanning
mechanism we use also helps us to improve our plans in time as far as cost
optimization is concerned.

The emphasis in the plans generated in our study is not on the selection among a
variety of operators but on the binding of the operators with the correct values so
that chosen values will result in an optimal travelled distance and minimal plan
generation time. A recent study concentrates on rewriting planning rules in terms
of replacing operators, links in a plan rule with the new ones if they will cause a
more cost effective plan [1]. Veloso shows how to do plan transformations when
the state changes by user intervention [14].

The robots can be working on their owns or they might be cooperating with each
other using messaging or other distributed information sharing mechanisms.
Generally a task scheduler at the highest level organizes the sequence of tasks
including arranging message receive/send times. However, the scheduler might
have less burden in interrupt driven systems depending on the real time
importance of the tasks to be achieved since message handling wouldn’t need to
be sequenced.

The task level scheduler in this study, is given as an algorithm in Figure 1. It calls
the image capturing and processing routines, evaluates the images to construct
world models, calculates costs in scope of the replanning mechanism and hence
schedules replanner and calls executive layer functions incoporating low level
behaviours to accomplish low level tasks such as basic robot movements. The
sequence of the tasks can be different depending on how important real time

processing is and hence reactivity needs to be stressed rather than allowing
replanning. It has also been the concern of the robotic AI since 1980s to figure out
whether planning or reactivity is most effective in achieving robust robots and one
side gains partial or full stress over the other depending on the type of the problem
domain. Currently there are pure AI planning researchers as well as there are
robotic planning researchers. The robotic planning researchers tend to apply
methods of AI planning in robotic planning. However, there are other researchers
who use the final architecture, 3T, as robotic architectures or its modifications [6].
These ones tend to concentrate on the reactive and sequencing layer of the
architecture rather than the top level planning layer. In this study, we show that
there might be robotic tasks that might need both reactive level and task planning
level unexpected event handling. That’s unexpected events that need to be solved
by reactivity will use reactive layer for event handling but there will be tasks that
will need to be solved with the replanning module closely integrated with the task
level planner. The examples of reactive execution is to drop an object the robot is
carrying or the arm is trying to put an object on another one while it’s not
supposed to do so. On the other hand, when the places of the objects in the robotic
environment changes, a new plan will be necessary which replanning will be the
task of the replanner.

2. PROPOSED ARCHITECTURE
The idea in planning is to integrate a vision system to detect timely changes in the
domain by the vision system. This limits us to examine problems where the
environment image can be grabbed from a top view of a single camera and hence
we can’t deal with problems such as putting blocks one on the other for example.
However the effort in finding the best solution for computationaly hard problems
compensates for not having three dimensional vision capabilities.

The general execution within the frame work is as follows: The task scheduler
does Neural Network training with sample images of the environment and waits
for user input to receive initial and goal world states. Then it calls the planner with
the initial and goal states. The planner uses means-ends analysis to produce a
plan. The produced plan steps are kept in a global plan file after which the
scheduler schedules each of the plan steps until all of them are executed
successfully. Execution of each step by the robot arm is followed by grabbing an
image of the environment, segmenting the image into square cells and recognition
of the object labels in each segment. The objects are labeled with letters that
represents each object. Segmenting the image of the environment leads to the
formation of the Observed_World_Model. If the Observed_World_Model is the
same as the Expected_World_Model, then the execution of the last plan step was
successful and there was nothing unexpected in the environment. However, if the
two models are different (partially or completely), then the replanning module is
scheduled for handling the results of the unexpected happening.
The replanning mechanism stores intermediate states for an initial and a goal state
pair which are known to be optimal or suboptimal from the intermediate state to
the goal state. For that reason, the replanner considers intermediate states as one
of the alternatives in addition to the two other alternatives in a previous work.

Refer to [16] for these alternatives and a replanning decision mechanism
implemented on the “Shuffled Pieces” problem.

Task Scheduler:
main() {
NN-training ;
user input();
Planner (Initial-State, Goal-State); // Produces steps like MOVE A (1,1) (1,8)

while(there is a plan command to execute) {

 RobotController (MOVE MISPLACED-PIECE (a,b) (c,d));
 Copy Expected-World-Model to Prev-World-Model;
 Update Expected-World-Model;
 Grab an image;

Segment the grabbed image;
 While(!end of image) {
 NN-recognition(a cell from the image);
 }//form Observed-World-Model
 Replanner();
} // while
}

Replanner(){
intermediate-State = get-suboptimal-intermediate-state-on-the current-path();
dm1 = compare(Intermediate-State, Observed-World-Model);
dm = compare(Expected-World-Model, Observed-World-Model);
if(dm1 < thr && dm1 < dm) {

new-plan = get-the-plan-from-intermediate-state-to-goal-state;
execute new-plan;

}
else {
 if(dm!=0 && dm < thr) {
 alter1-cost();

 Planner(Observed-World-Model, Previous-World-Model);
 while(there is a plan command to execute) {
 robot-controller(); // executive layer & behaviours

update Expected-World-Model;
} //while

} //if
else {

alter2-cost();
 Planner(Observed-World-Model, Goal-State);

 while(there is a plan command to execute) {
 robot-controller(); // executive layer & behaviours

update Expected-World-Model;
} //while will not continue with old plan

} // else
} //else

} // Replanner

In scope of the explanations above, the general framework for the architecture is
as in Figure 2.

The behaviours in Figure 2 are suppressed when there’s a replanning decision.
The behaviours have (“MOVE PIECE_NAME (X1 Y1) (X2 Y2) “, supress-value)
as the parameters. If the supress-value = 1 then that means an unexpected event
was detected from the scanned image.

3. THE DESCRIPTION OF THE VISION GUIDED PLANNER (VGP)

The field of AI planning seeks to build control algorithms that enable an agent to
synthesize a course of action that will achieve its goals [15].

Methods for compiling planning problems into propositional formulae for solution
using the latest, speedy systematic and stochastic SAT algorithms in particular
have attracted much attention. These methods are impacted by recent progress in
constraint satisfaction and search technology and they have quite impressive

Figure 1: Task Scheduler

PLAN
BASE

CONSTRAINT
BASE

DOMAIN
SPECIFICATIONS

Camera

Segmentation

NN
Recognition

. Behaviour

Sensors

Behaviour

Executive Layer

Robot

Figure 2: Proposed Framework.

Comparator

Planner

Task Scheduler

Replanner

Initial
State

Goal
State

Observed_World_Model

Expected_World_Model
Previous_World_Model

performance level. For example, BLACKBOX planner [8] requires only six
minutes to find a 105-action logistics plan in a world with 1016 possible states.
In the STRIPS representation, each action is described with a conjunctive
precondition and conjunctive effect that defines a transition function from worlds
to worlds. The action can be executed in any world satisfying the precondition
formula. To execute an action in a world is described by taking the state
description of the world and adding each literal from the action’s effect
conjunction to the state to eliminate the contradictory literals along the way.

A simple formulation of the planning problem defines three inputs:
1. A description of initial state or a description of initial state of the world in some
formal language, i.e., predicate calculus.
2. A description of the agent’s goal(s) i.e. what behavior is desired, in some
formal language.
3.The operator to match preconditions into actions.

The planner in this study uses STRIPS representation of actions, goals and intial
state and uses means-ends analysis to extract actions. We are not aiming at
generating a planner that has better performance than the ones in the literature but
to realize an integrated system architecture to solve planning problems and do
vision based replanning at high level of abstraction and present a replanning
approach that extends the idea of replanning from replacing operators with the
new ones in a newly generated state after an unexpected event(s) occur to making
decisions among alternatives for best actions in terms of cost optimization. Since
we consider cost optimization for replanning and since the replanning idea is
highly dependent on the planner itself, an improvement in the planner’s
performance will also affect the replanning performance. As future work, we plan
to compare the cost optimization performance of replanning with a problem
specific algorithm to the performances obtained by using means–ends analysis.

Some recent work uses “dynamic CSP (Constraint Satisfaction Problems)” to
optimize planning problems as a result of observation of similarities between CSP
to the planning solutions [5]. Dynamic CSP is a constraint satisfaction problem in
which the set of variables and associated constraints change based on the selection
of values to earlier variables. This is also the point that causes the computational
intractability in the shuffled pieces problem [16]. Eventually all variables must
have values assigned but the order in which they are selected can have a huge
impact on efficiency. In general, a good heuristic is to select the variable with the
fewest remaining and non-conflicting values. However, in the shuffled pieces
problem, the variables don’t conflict with each other but the problem is to get a
sequence of moves that will be optimal.

A planner can be made as specific as possible using a specific algorithm for the
optimization considerations of a problem or can use a common inferencing
mechanism for many domains. These two alternatives may result in a single
planner when the problem is not computationally tractable and hence possible to
define the solution in form of constraints and control rules. In this study a means-
end analysis planner is used where it doesn’t seem to be possible to define an
optimal or a suboptimal solution in form of defining constraints and control rules.

It doesn’t seem possible to embed the algorithm in one of the methods in literature
to approach an optimal solution.

Researchers have begun investigating the possibility of relaxing the perfect
knowledge assumptions while staying close to the framework of classical
planning in 1990s [11,4,12,3,13].

Cassandra [12], a contingency planner whose plans have the following features:
1-The plans include specific decision steps to determine which of the possible
courses of action to pursue.
2-Information gathering steps are distinct from decision steps.
3-The circumstances in which it is possible to perform an action are distinguished
from those in which it is necessary to perform it.

If there are many decision steps whose preconditions are satisfied in current state
and hence each one is applicable, select the one that will minimize overall cost. In
addition, in case of unexpected events, not only decide to backtrack to remove the
effects of unexpected happening but also “make a decision between backtracking
or going directly to a final state”. This mechanism is actually enriched by
applying a previously stored plan if there’s one already. There are previously
designed intermediate states that are known to have the best path from where they
are to the final state. If the diffence between one of these states and the
unexpected state is below some threshold, then it will then directly go to that state
to execute the plan from that state to the goal.

Contingency planning is only one approach to the problem of planning under
uncertainty [13]. The aim of contingency planning is to construct a single plan
that will succeed in all circumstances, it is essentially an extension of classical
planning. There are other approaches to planning under uncertainty that do not
share this aim. Probabilistic planners aim to construct plans that have a high
probability of success. Systems that interleave planning and execution do not
attempt to plan fully in advance. In both of these approaches, it is possible to
address the problem of determining which contingencies should be planned for,
which is not currently possible in Cassandra. A third approach is that of reactive
planning, in which behavior is controlled by a set of reaction rules.

4. THE PROBLEM DOMAIN
We define domains where replanning is an important concept to handle events.
We want to show that while doing replanning we might need to consider different
alternatives in order to main cost effectiveness instead of choosing a step to
execute to get rid of the unexpected effects of a happening.

The defined domains are the shuffled pieces problem, chess game, component
insertion in an electronic board and box transportation in factories. The domain
base is possible to grow as far as the nature of the domain is consistent with the
optimization replanning idea. That is, the cost of travelling is important and the
users have optimization considerations. The vision capabilities such as three-
dimensional vision has importance in increasing the domain types. Constraints are
embeded in the control rules.

Search control rules are provided to reduce the number of choices at each decision
point by pruning the search space or suggesting a course of action while
expanding the plan. Control rules are if-then rules that indicate which choices
should be made (or avoided) depending on the current state and other meta-level
information. In particular, control rules can select, prefer or reject specific
planning choices at every decision point [10]. Control rules can be used to focus
planning on particular goals and towards desirable plans. VGP planner uses a
control rule that either controls the movement of the arm to the closest misplaced
piece or moves the misplaced piece to the closest goal using heuristic search. In
Table 1, these two situations combine into a single rule using the if-then-else
structure. The operators that will be enabled in the control rule are defined in
Table 3. Table 2 defines the object structure that holds the characteristics of the
objects in the environment and needs to be instantiated (object type
(ARM/BLOCK, current object location, etc.). The actions (move_block,
move_arm) are recorded as plan steps.

Preconditions A and the Actions A will hold for the situation when a block has
already been decided on for being carried to its destination. Preconditions A check
whether the object to be moved is a block, whether its closest destination has been
determined and whether the destination is empty. If all of these preconditions hold
in the current state, Actions A are executed. Actions A include moving the block
to its empty destination. If the destination is not empty, this situation is detected in
function empty_destination(&obj) and the occupied destination is emptied by carrying
the occupying block to the closest empty place. If the object to be moved is the arm but
not the block, this means the arm seeks to find the closest block to itself to carry the block
to its destination. Thus, Preconditions B check whether the object to be moved is the arm,
whether the destination that the arm will be moving to is empty or full (supposed
to be full because there will be a block there) and whether the arm has chosen the
closest block to itself. If all these conditions hold, the arm moves to the closest
block with actions B. The status is updated to be "arm-is-moving" or "block-is-
moving" depending on the current status of the planner.

Table 1: Control Rule

if (!strcmp(obj.type,”BLOCK") &&
 find_closest_destination_from_block(&obj) &&
 !empty_destination(&obj)) {
 move_block(&obj);
 strcpy(status,"arm-is-moving");}
else if (!strcmp(obj.type,"ARM") &&
 find_closest_destination_from_arm(&obj)
 !empty_destination(&obj)) {
 move_arm(&obj);
 strcpy(status,"block-is-moving");}

Actions A

Preconditions A

Preconditions B

Effects B

Table 2: Object structure

Object {
char type[]; // Arm/Piece
char name; // P(iyon), V(ezir), K(ale), S(ah), A(t),F(il)
char destinationOccupancy[]; // Full / Empty
char distanceToDestination[] ; // Closest / Unknown
 int distance, destx, desty, curlocx, curlocy;
int processed;

 } ;

5. CONCLUSION
In this study, a vision guided architecture is proposed as a framework for the
planning/replanning of tasks for a class of robotic problems. The main difference
of the proposed architecture from the current architectures in literature is its
functionally at the deliberation layer with vision supported replanning. Our
architecture incorporates sequencing and reactive layers of 3-Tier architecture.
However, it diverges the load on the lowest two layers (sequencing and reactive)

(a) Move Block

void move_block(object *obj){
 if(!strcmp(status,"block-is-moving") &&
 !strcmp(obj-estinationOccupancy,"EMPTY")){
 strcpy(obj->type,"ARM");
 Desired_World_Model[obj->destx][obj->desty] = *obj;
 Desired_World_Model[obj->curlocx][obj->curlocy].name = ' ';
 Goal[obj->destx][obj->desty].processed = 1;
 Initial[obj->curlocx][obj->curlocy].processed = 1;
 obj->name = ' ';
 obj->curlocx = obj->destx;
 obj->curlocy = obj->desty;
 obj->destx = -1;
 obj->desty = -1;
 strcpy(obj->destinationOccupancy, "FULL");
 obj->distance = -1;

}

void move_arm(object *obj){
 if(!strcmp(status,"arm-is-moving") &&
 !strcmp(obj->destinationOccupancy,"FULL"));
 strcpy(obj->type,"MISPLACED");
 obj->name = Desired_World_Model[obj->destx][obj->desty].name;
 obj->curlocx = obj->destx;
 obj->curlocy = obj->desty;
 obj->destx = -1;
 obj->desty = -1;
 obj->processed = 0;
 strcpy(obj->destinationOccupancy, "UNKNOWN");
 obj->distance = -1;
}

Table 3: The primary operators in VGP’s task planning domain

(b) Move Arm

of the 3-Tier architecture partially to the deliberation layer. This feature is
necessary as it’s shown in this paper that some of robotic tasks might need
modifications in their high level plans and the lowest two layers of the 3-Tier
architecture will be insufficient for handling those needs.
REFERENCES
1. Ambite, J. L. and Knoblock, C. A., 2001, “Planning by Rewriting”, Journal of
Artificial Intelligence Research 15, pp. 207-261.

2. Arkin, R. C., “Behaviour-Based Robotics”, The MIT Press, Cambridge,
Massachusetts, 1999.

3. Draper, D., Hanks, S., & Weld, D.,1994, “A probabilistic model of action for
least_commitment planning with information gathering”, In Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence, pp. 178-186, Seattle,
WA. Morgan Kaufmann.

4. Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N. & Williamson, M., 1992,
“An approach to planning with incomplete information”, In Proceedings of the
Third International Conference on Knowledge Representation and Reasoning, pp.
115-125, Boston, MA, Morgan Kaufmann.

5. Falkenhainer, B, Forbus, K., 1998, “Setting up large scale qualitative models”,
In Proc. 7th National Conf. AI, pp. 301-306.

6. Gat, E., 1998, “Three Layer Architectures”, in Artificial Intelligence and
Mobile Robots, MIT Press.

7. Glover, F., 1989, “Tabu search-Part 1”, ORSA Journal on Computing, 1 (3),
pp.190-206.

8. Kautz, H. , Selman, B., 1998, “Blackbox: A new approach to the application of
theorem proving to problem solving”, In AIPS98 Workshop on Planning as
Combinatorial Search, pp. 58-60.

9. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, “Optimization by
simulated annealing”, Science, 220, pp. 671-680.

10. Laird, E. L., Congdon, C. B., and Coulter, K. J., 1998, “The Soar User’s
Manual Version 8.2”, University of Michigan.

11. Peot, M. A., Smith, D. E., 1992, “Conditional nonlinear planning”, In
Proceedings of the First International Conference on Artificial Intelligence
Planning Systems, pp189-197, College Park, Maryland, Morgan Kaufmann.

12. Pryor, L. & Collins, G., 1993, “Cassandra: Planning with contingencies”,
Technical report 41, Institute for the Learning Sciences, Northwestern University.

13. Pryor, L., & Collins, G., 1996, “Planning for Contingencies: A
Decision_based Approach”, Journal of Artificial Intelligence Research, 4, pp.
287-339.

14. Veloso, M. M., Carbonell, J., P'erez, M. A, Borrajo, D., Fink, E., and Blythe,
J., 1995, ”Integrating planning and learning: The Prodigy architecture”, Journal of
Experimental and Theoretical Artificial Intelligence, 7(1), pp. 81-120.

15. Weld, D. S., 1999, “Recent Advances in AI planning”, AI Magazine.

16. Yıldırım, Ş. and Tunalı, T., 1999, “A new methodology for dealing with
uncertainty in robotic tasks”, XIV. Int. Symp. on Comp.& Inf.Sci., Kuşadası,
TURKİYE.

