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ABSTRACT 
In this study, a new robotic task replanning architecture for a class of problems   
is proposed. The architecture supports replanning in deliberation layer in 
addition to the unexpected event handling of low level behaviours. The replanning 
mechanism is supported by vision feedback to update the internal state of the 
system at certain intervals for exegoneous event detection. The expected state is 
known after each plan step execution. High level plans are compiled into low-
level behaviours for execution and some unexpected events that do not need 
deliberation layer interference are handled with low-level behaviours supported 
by sensory feedback. 

Keywords:  robotics, unstructured robotic environments, operation safety and 
efficiency, planning, replanning, robotic architectures, vision feedback. 

1. INTRODUCTION 

Robotics research is being done on building up robust robot systems for several 
decades by now. However, the state of art shows us that the deliberation side of 
these architectures needs more attention for increasing its contibution in 
exegoneous event handling. Although using low level behaviours as in 
Subsumption Achitecture [2] for unexpected event handling solves many 
problems, the opportunities that might arise with using high level behaviours need 
to be considered. The architecture in this study is an integrated deliberative 
planning and replanning system that also enables learning from past experience. 
The learning side of the system comes from the fact that it stores previous plans 
by indexing into the plan database by using initial and goal state pairs. A function 
defined takes initial and goal states as inputs and produces an index into the plan 
database for a previously stored plan. The other side of learning is to use a vision 
system that updates the world model after each execution step. This is currently 
possible by taking robot arm away until the camera grabs an image of the 
environment and proccesses the image for an unexpected event detection and goes 
to the pose of the most recent move to continue with the rest of the plan if there’s 
not something unexpected.  

Today, most of the studies concentrate on robots getting the best understanding of 
the world by forming world maps at the begining of the system execution. But it’s 
always possible that the environment is dynamic and changing frequently. So the 
word “replanning” in our study corresponds to figuring out the next sequence of 
actions in case of a world change. Hence, in our study the robot gets the 
knowledge of the environment after each execution step to figure out changes. 
This aspect can be made continuous depending on how long it takes to process the 
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image grabbed to get the current world model which will also be called observed 
world model. 

The architecture to be used in robotics tasks is mostly affected by the type of tasks 
the robotic planner is going to produce plans for. However there are studies on 
producing domain-independent planners. As a result, the architecture formed in 
this study is somewhat dependent on the problems addressed although it has the 
fexibility to replace the embedded modules with the new ones that solve other 
problems. There are two sources of complexity in planning: 

Satisfiability: the difficulty of finding any solution to the planning problem 
(regardless of the quality of the solution). 
Optimization: the difficulty of finding the optimal solution under a given cost 
metric. 

In particular, there are many domains in which t 

he satisfiability problem is relatively easy and their complexity is dominated by 
the optimization problem. For example, there may be many plans that would solve 
the problem, so that finding a plan is easy in practice, but the cost of each solution 
varies greatly, thus finding the optimal one is computationally hard. We will refer 
to these domains as optimization domains. The planner currently used is a means-
ends analysis planner which does heuristic local search. The efficiency of some 
other methods in literature for optimal planning will also be tested for the class of 
problems in hand. The methods that can be considered are iterative improvement, 
variable-depth search, simulated annealing [9] and tabu search [7]. The replanning 
mechanism we use also helps us to improve our plans in time as far as cost 
optimization is concerned. 

The emphasis in the plans generated in our study is not on the selection among a 
variety of operators but on the binding of the operators with the correct values so 
that chosen values will result in an optimal travelled distance and minimal plan 
generation time. A recent study concentrates on rewriting planning rules in terms 
of replacing operators, links in a plan rule with the new ones if they will cause a 
more cost effective plan [1]. Veloso shows how to do plan transformations when 
the state  changes by user intervention [14]. 

The robots can be working on their owns or they might be cooperating with each 
other using messaging or other distributed information sharing mechanisms. 
Generally a task scheduler at the highest level organizes the sequence of tasks 
including arranging message receive/send times. However, the scheduler might 
have less burden in interrupt driven systems depending on the real time 
importance of the tasks to be achieved since message handling wouldn’t need to 
be sequenced. 

The task level scheduler in this study, is given as an algorithm in Figure 1. It calls 
the image capturing and processing routines, evaluates the images to construct 
world models, calculates costs in scope of the replanning mechanism and hence 
schedules replanner and calls executive layer functions incoporating low level 
behaviours to accomplish low level tasks such as basic robot movements. The 
sequence of the tasks can be different depending on how important real time 



  

processing is and hence reactivity needs to be stressed rather than allowing 
replanning. It has also been the concern of the robotic AI since 1980s to figure out 
whether planning or reactivity is most effective in achieving robust robots and one 
side gains partial or full stress over the other depending on the type of the problem 
domain. Currently there are pure AI planning researchers as well as there are 
robotic planning researchers. The robotic planning researchers tend to apply 
methods of AI planning in robotic planning. However, there are other researchers 
who use the final architecture, 3T, as robotic architectures or its modifications [6].  
These ones tend to concentrate on the reactive and sequencing layer of the 
architecture rather than the top level planning layer. In this study, we show that 
there might be robotic tasks that might need both reactive level and task planning 
level unexpected event handling. That’s unexpected events that need to be solved 
by reactivity will use reactive layer for event handling but there will be tasks that 
will need to be solved with the replanning module closely integrated with the task 
level planner. The examples of reactive execution is to drop an object the robot is 
carrying or the arm is trying to put an object on another one while it’s not 
supposed to do so. On the other hand, when the places of the objects in the robotic 
environment changes,  a new plan will be necessary which replanning will be the 
task of the replanner.  

2. PROPOSED ARCHITECTURE 
The idea in planning is to integrate a vision system to detect timely  changes in the 
domain by the vision system. This limits us to examine problems where the 
environment image can be grabbed from a top view of a single camera and hence 
we  can’t deal with problems such as putting blocks one on the other for example. 
However the effort in finding the best solution for computationaly hard problems 
compensates for not having three dimensional vision capabilities.  

The general execution within the frame work is as follows: The task scheduler 
does Neural Network training with sample images of the environment and waits 
for user input to receive initial and goal world states. Then it calls the planner with 
the initial and goal states. The planner uses means-ends analysis to produce a 
plan. The produced plan steps are kept in a global plan file after which the 
scheduler schedules each of the plan steps until all of them are executed 
successfully. Execution of each step by the robot arm is followed by grabbing an 
image of the environment, segmenting the image into square cells and recognition 
of the object labels in each segment. The objects are labeled with letters that 
represents each object. Segmenting the image of the environment leads to the 
formation of the Observed_World_Model. If the Observed_World_Model is the 
same as the Expected_World_Model, then the execution of the last plan step was 
successful and there was nothing unexpected in the environment. However, if the 
two models are different (partially or completely), then the replanning module is 
scheduled for handling the results of the unexpected happening.  
The replanning mechanism stores intermediate states for an initial and a goal state 
pair which are known to be optimal or suboptimal from the intermediate state to 
the goal state. For that reason, the replanner considers intermediate states as one 
of the alternatives in addition to the two other alternatives in a previous work. 



  

Refer to [16] for these alternatives and a replanning decision mechanism 
implemented on the “Shuffled Pieces” problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Task Scheduler: 
main() { 
NN-training ; 
user input(); 
Planner (Initial-State, Goal-State); // Produces steps like MOVE A (1,1) (1,8) 
 
while(there is a plan command to execute) { 
 
 RobotController (MOVE MISPLACED-PIECE (a,b) (c,d)); 
 Copy Expected-World-Model to Prev-World-Model; 
 Update Expected-World-Model; 
 Grab an image; 

Segment the grabbed image; 
 While(!end of image) { 
  NN-recognition( a cell from the image); 
 }//form Observed-World-Model 
 Replanner();  
} // while 
} 
 
Replanner(){ 
intermediate-State = get-suboptimal-intermediate-state-on-the current-path(); 
dm1 = compare(Intermediate-State, Observed-World-Model); 
dm = compare(Expected-World-Model, Observed-World-Model); 
if(dm1 < thr && dm1 < dm) { 

new-plan = get-the-plan-from-intermediate-state-to-goal-state; 
execute new-plan; 

} 
else { 
 if(dm!=0 && dm < thr) { 
  alter1-cost(); 

 Planner(Observed-World-Model, Previous-World-Model); 
  while(there is a plan command to execute) { 
   robot-controller(); // executive layer & behaviours 

update Expected-World-Model; 
} //while 

} //if 
else { 

alter2-cost(); 
 Planner(Observed-World-Model, Goal-State); 

  while(there is a plan command to execute) { 
   robot-controller(); // executive layer & behaviours 

update Expected-World-Model; 
} //while  will not continue with old plan 
 

} // else 
} //else 

} // Replanner 



  

 
 
 
In scope of the explanations above, the general framework for the architecture is 
as in Figure 2. 
 
 
 
 
 
 
 
                                                                                                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The behaviours in Figure 2 are suppressed when there’s a replanning decision. 
The behaviours have (“MOVE PIECE_NAME (X1 Y1) (X2 Y2) “, supress-value) 
as the parameters. If the supress-value = 1 then that means an unexpected event 
was detected from the scanned image.  

3. THE DESCRIPTION OF THE VISION GUIDED PLANNER (VGP) 

The field of AI planning seeks to build control algorithms that enable an agent to 
synthesize a course of action that will achieve its goals [15]. 

Methods for compiling planning problems into propositional formulae for solution 
using the latest, speedy systematic and stochastic SAT algorithms in particular 
have attracted much attention. These methods are impacted by recent progress in 
constraint satisfaction and search technology and they have quite impressive 

Figure 1: Task Scheduler 
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performance level. For example, BLACKBOX planner [8] requires only six 
minutes to find a 105-action logistics plan in a world with 1016 possible states.  
In the STRIPS representation, each action is described with a conjunctive 
precondition and conjunctive effect that defines a transition function from worlds 
to worlds. The action can be executed in any world satisfying the precondition 
formula. To execute an action in a world is described by taking the state 
description of the world and adding each literal from the action’s effect 
conjunction to the state to eliminate the contradictory literals along the way. 

A simple formulation of the planning problem defines three inputs: 
1. A description of initial state or a description of initial state of the world in some 
formal language, i.e., predicate calculus. 
2. A description of the agent’s goal(s) i.e. what behavior is desired, in some 
formal language. 
3.The operator to match preconditions into actions. 

The planner in this study uses STRIPS representation of actions, goals and intial 
state and uses means-ends analysis to extract actions. We are not aiming at 
generating a planner that has better performance than the ones in the literature but 
to realize an integrated system architecture to solve planning problems and do 
vision based replanning at high level of abstraction and present a replanning 
approach that extends the idea of replanning from replacing operators with the 
new ones in a newly generated state after an unexpected event(s) occur to making 
decisions among alternatives for best actions in terms of cost optimization.  Since 
we consider cost optimization for replanning and since the replanning idea is 
highly dependent on the planner itself, an improvement in the planner’s 
performance will also affect the replanning performance. As future work, we plan 
to compare the cost optimization performance of replanning with a problem 
specific algorithm to the performances obtained by using means–ends analysis.  

Some recent work uses “dynamic CSP (Constraint Satisfaction Problems)” to 
optimize planning problems as a result of observation of similarities between CSP 
to the planning solutions [5]. Dynamic CSP is a constraint satisfaction problem in 
which the set of variables and associated constraints change based on the selection 
of values to earlier variables. This is also the point that causes the computational 
intractability in the shuffled pieces problem [16]. Eventually all variables must 
have values assigned but the order in which they are selected can have a huge 
impact on efficiency.  In general, a good heuristic is to select the variable with the 
fewest remaining and non-conflicting values. However, in the shuffled pieces 
problem, the variables don’t conflict with each other but the problem is to get a 
sequence of moves that will be optimal.  

A planner can be made as specific as possible using a specific algorithm for the 
optimization considerations of a problem or can use a common inferencing 
mechanism for many domains. These two alternatives may  result in a single 
planner when the problem is not computationally tractable and hence possible to 
define the solution in form of constraints and control rules. In this study a means-
end analysis planner is used where it doesn’t seem to be possible to define an 
optimal or a suboptimal solution in form of defining constraints and control rules. 



  

It doesn’t seem possible to embed the algorithm in one of the methods in literature 
to approach an optimal solution.  

Researchers have begun investigating the possibility of relaxing the perfect 
knowledge assumptions while staying close to the framework of classical 
planning in 1990s [11,4,12,3,13]. 

Cassandra [12], a contingency planner whose plans have the following features: 
1-The plans include specific decision steps to determine which of the possible 
courses of action to pursue. 
2-Information gathering steps are distinct from decision steps.  
3-The circumstances in which it is possible to perform an action are distinguished 
from those in which it is necessary to perform it. 

If there are many decision steps whose preconditions are satisfied in current state 
and hence each one is applicable, select the one that will minimize overall cost. In 
addition, in case of unexpected events, not only decide to backtrack to remove the 
effects of unexpected happening but also “make a decision between backtracking 
or going directly to a final state”. This mechanism is actually enriched by 
applying a previously stored plan if there’s one already. There are previously 
designed intermediate states that are known to have the best path from where they 
are to the final state. If the diffence between one of these states and the 
unexpected state is below some threshold,  then it will then directly go to that state 
to execute the plan from that state to the goal.  

Contingency planning is only one approach to the problem of planning under 
uncertainty [13]. The aim of contingency planning is to construct a single plan 
that will succeed in all circumstances, it is essentially an extension of classical 
planning. There are other approaches to planning under uncertainty that do not 
share this aim. Probabilistic planners aim to construct plans that have a high 
probability of success. Systems that interleave planning and execution do not 
attempt to plan fully in advance. In both of these approaches, it is possible to 
address the problem of determining which contingencies should be planned for, 
which is not currently possible in Cassandra. A third approach is that of reactive 
planning, in which behavior is controlled by a set of reaction rules. 

4. THE PROBLEM DOMAIN  
We define domains where replanning is an important concept to handle events. 
We want to show that while doing replanning we might need to consider different 
alternatives in order to main cost effectiveness instead of choosing a step to 
execute to get rid of the unexpected effects of a happening.  

The defined domains are the shuffled pieces problem, chess game, component 
insertion in an electronic board and box transportation in factories.  The domain 
base is possible to grow as far as the nature of the domain is consistent with the 
optimization replanning idea. That is, the cost of travelling is important and the 
users have optimization considerations. The vision capabilities such as three-  
dimensional vision has importance in increasing the domain types. Constraints are 
embeded in the control rules. 



  

Search control rules are provided to reduce the number of choices at each decision 
point by pruning the search space or suggesting a course of action while 
expanding the plan. Control rules are if-then rules that indicate which choices 
should be made (or avoided) depending on the current state and other meta-level 
information. In particular, control rules can select, prefer or reject specific 
planning choices at every decision point [10]. Control rules can be used to focus 
planning on particular goals and towards desirable plans. VGP planner uses a 
control rule that either controls the movement of the arm to the closest misplaced 
piece or moves the misplaced piece to the closest goal using heuristic search. In 
Table 1, these two situations combine into a single rule using the if-then-else 
structure. The operators that will be enabled in the control rule are defined in 
Table 3. Table 2 defines the object structure that holds the characteristics of the 
objects in the environment and needs to be instantiated (object type 
(ARM/BLOCK, current object location, etc.). The actions (move_block, 
move_arm) are recorded as plan steps.  
 
 
 
 
 
 
 
 
 
 
 

Preconditions A and the Actions A will hold for the situation when a block has 
already been decided on for being carried to its destination. Preconditions A check 
whether the object to be moved is a block, whether its closest destination has been 
determined and whether the destination is empty. If all of these preconditions hold 
in the current state, Actions A are executed. Actions A  include moving the block 
to its empty destination. If the destination is not empty, this situation is detected in 
function empty_destination(&obj) and the occupied destination is emptied by carrying 
the occupying block to the closest empty place. If the object to be moved is the arm but 
not the block, this means the arm seeks to find the closest block to itself to carry the block 
to its destination. Thus, Preconditions B check whether the object to be moved is the arm,  
whether the destination that the arm will be moving to is empty or full (supposed 
to be full because there will be a block there) and whether the arm has chosen the 
closest block to itself. If all these conditions hold, the arm moves to the closest  
block with actions B. The status is updated to be "arm-is-moving" or "block-is-
moving" depending on the current status of the planner. 
 
 
 
 
 
 

Table 1: Control Rule

if (!strcmp(obj.type,”BLOCK") && 
   find_closest_destination_from_block(&obj) &&  
   !empty_destination(&obj)) { 
      move_block(&obj); 
      strcpy(status,"arm-is-moving");} 
else if (!strcmp(obj.type,"ARM") && 
       find_closest_destination_from_arm(&obj)  
       !empty_destination(&obj)) { 
          move_arm(&obj); 
          strcpy(status,"block-is-moving");} 
 

Actions A 

Preconditions A

Preconditions B

Effects B 

Table 2: Object structure

Object { 
char type[ ];                                     // Arm/Piece 
char name;                                      // P(iyon), V(ezir), K(ale), S(ah), A(t),F(il)    
char destinationOccupancy[ ];        // Full / Empty 
char distanceToDestination[ ] ;       // Closest / Unknown 
 int distance, destx, desty, curlocx, curlocy; 
int processed; 

 } ; 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             
 
 
 
 
 
 
 
 
5. CONCLUSION 
In this study, a vision guided architecture is proposed as a framework for the 
planning/replanning of tasks for a class of robotic problems. The main difference 
of the proposed architecture from the current architectures in literature is its 
functionally at the deliberation layer with vision supported replanning. Our 
architecture incorporates sequencing and reactive layers of 3-Tier architecture. 
However, it diverges the load on the lowest two layers (sequencing and reactive) 

(a) Move Block

void move_block(object *obj){ 
    if(!strcmp(status,"block-is-moving") && 
       !strcmp(obj-estinationOccupancy,"EMPTY")){ 
         strcpy(obj->type,"ARM"); 
         Desired_World_Model[obj->destx][obj->desty] = *obj; 
         Desired_World_Model[obj->curlocx][obj->curlocy].name = ' '; 
         Goal[obj->destx][obj->desty].processed = 1; 
         Initial[obj->curlocx][obj->curlocy].processed = 1; 
         obj->name = ' '; 
         obj->curlocx = obj->destx;    
         obj->curlocy = obj->desty;    
         obj->destx = -1;    
         obj->desty = -1;    
         strcpy(obj->destinationOccupancy, "FULL"); 
        obj->distance = -1; 
 
} 

void move_arm(object *obj){ 
    if(!strcmp(status,"arm-is-moving") && 
        !strcmp(obj->destinationOccupancy,"FULL")); 
       strcpy(obj->type,"MISPLACED"); 
       obj->name = Desired_World_Model[obj->destx][obj->desty].name; 
       obj->curlocx = obj->destx;    
       obj->curlocy = obj->desty;    
       obj->destx = -1;    
       obj->desty = -1;    
       obj->processed = 0; 
       strcpy(obj->destinationOccupancy, "UNKNOWN"); 
       obj->distance = -1; 
} 

Table 3: The primary operators in VGP’s task planning domain 

(b) Move Arm



  

of the 3-Tier architecture partially to the deliberation layer.  This feature is 
necessary as it’s shown in this paper that some of robotic tasks might need 
modifications in their high level plans and the lowest two layers of the 3-Tier 
architecture will be insufficient for handling those needs.    
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