
A HYBRID TASK PLANNER ARCHITECTURE

FOR PICK AND PLACE SEQUENCING

Şule Yıldırım∗, Turhan Tunalı∗ and Pavel Petrovic∗∗

ABSTRACT
Robotic task planning for a class of problems involving sequences of pick-and-
place operations is examined. Major planners developed in the literature are
overviewed from the point of view of the introduced class of problems. A new
architecture with reactive aspects is proposed. The basic properties of the
architecture are discussed. Finally, an implementation of the architecture is
explained.
Keywords: robotics, unstructured robotic environments, operation safety and
efficiency, planners, reactive systems, hybrid systems.

1. INTRODUCTION
Present robot arms carry out predefined tasks in well defined environments where
all operations are completed successfully. However, if an unexpected event occurs
in the environment, an operator has to interfere with the robot operation and
typically reprogram the robot arm manually. If mechanisms can be developed to
tackle with the unexpected events, then robot arms can be used safely in
unstructured environments. Bearing this fact in mind, robotics and AI people
work on building up safe and efficient robotic architectures to solve task planning
problem in presence of unexpected events.

This study concentrates on a high level planning domain where a planner receives
an initial and a target configuration of the environment and generates a sequential
plan of operations that transform the initial state of the environment to the target
state. We consider a class of pick-and-place problems which fit some predefined
constraints. The planner is expected to cope with a class of unexpected events
occuring in the environment.

Unexpected events or actions caused by external intruders change a random part
of the environment at a random time. They differ from actions in a plan sequence.
Unexpected events cause the generated plans to become obsolete. Consequently,
either the current state of the environment can be taken back to the state before the
unexpected event occurred or a completely new plan can be generated and
executed [1]. The second option is chosen when the previous experience suggests
that generating a new plan would take less total time than moving back to the
previous state and continuing with the original plan. However, the state of the
environment after an unexpected event might be closer to the target configuration
and the complete replanning might be still too time consuming. In such a case, the

∗ International Computing Institute, Ege University, Bornova Izmir Turkey,
 yildirim, tunali@ube.ege.edu.tr

∗∗ Department of Computer and Information Sciences, Norwegian University of Science and
Technology, Trondheim Norway,

 pavel.petrovic@idi.ntnu.no

TAINN 2000

system finds the “most” time-saving sequence of operations that will move the
state of the environment to a state that is on the path of the original plan.

This paper is organized as follows: Section 2 explains and provides examples of
planners, reactive systems and hybrid systems in literature. Section 3 discusses
related planners further from our problem’s point of view. Section 4 defines our
general problem, for which a general architecture is shown in section 5. An
implementation is given in section 6. Finally, in section 7, concluding remarks
are made.

2. DELIBERATIVE, REACTIVE AND HYBRID SYSTEMS
Current robotic systems are deliberative (plan and use knowledge representation),
reactive or hybrid [2]. Deliberative systems rely mainly on symbolic reasoning
and world representation whereas reactive systems are reflexive. The speed of a
response of a robotic system increases as it becomes more reactive. On the other
hand, the predictive capabilities of the systems increase while the systems get
more deliberative. Also deliberative systems depend on accurate and complete
world models while reactive robotic systems don’t tend to use world models at all.

In common sense, the word “planning” refers to the process of computing several
steps of a problem solving procedure before executing any step. There exists vast
amount of literature about planners. Basic types of planners are non-hierarchical,
hierarchical, skeletal and opportunistic [3]. Non-hierarchical planners use goals
directly to find operators as in NOAH [4] and STRIPS [5] planners. In
hierarchical planners, planning begins at an abstract level, but later abstract goals
are expanded into more detailed subgoals as in ABSTRIPS [6], NONLIN [7] and
DEVISER [8]. Skeletal planners store successful earlier plans in a plan database.
Before planning begins, goals are compared against the skeletal plans. If one or
more plans in the database satisfy the current goals and the current world model,
the best plan will be chosen as in MOLGEN [9]. Opportunistic planners develop
plans in two stages: parts of a plan may be arranged with backtracking and later
parts are linked together and enlarged as opportunities become available.

Reactive systems were developed in response to several apparent drawbacks of
deliberative reasoners including a perceived lack of responsiveness in
unstructured and uncertain environments due to both the requirements of world
modelling and the limited communication pathways. Inaccurate information can
cause the deliberative reasoner’s reasoning to be totally incorrect. In a dynamic
world with arbitrarily moving objects (e.g. in a crowded corridor), it is potentially
dangerous to rely on past data that may no longer be valid. Representational world
models are therefore generally constructed from both prior knowledge about the
environment and sensory data in support of deliberation. Some researchers view
planning only as a way of how to avoid figuring out what to do next.

In the real world of biological agents, the conditions favoring purely deliberative
planners generally do not exist [2]. To cope with the problems of real world
environments, methods like behaviour-based reactive control are necessary [2]. To
make use of best of two methods, hybrid deliberative/reactive robotic
architectures have recently emerged combining aspects of traditional AI symbolic
methods and their use of abstract representational knowledge, but maintaining the

goal of providing the responsiveness, robustness, and flexibility of purely reactive
systems.

3. EXISTING ROBOTIC TASK PLANNERS
While the existing task planners try to solve planning problems for a wide variety
of areas, we prefer to limit the planning problem to sequences of pick-and-place
operations. We think that, the simplicity of the case can further help us in
developing the idea. On the other hand, these type of operations are typical in
many areas, for example, assembly planning. An assembly plan is an ordered list
of instructions specifying what components to be assembled, what fixtures and
tools to be used, etc., such that a product can be successfully assembled with the
equipment available in an assembly cell [10]. The ordering of instructions in an
assembly plan is important because placing a component to a certain location
might prevent another component from being placed to its destination. [11,12] are
two approaches which represent assembly plans as an ordered list of components
and subassemblies so that generated assembly plans are feasible. On the other
hand, knowledge-based approaches [10], where the knowledge involved in the
problem can be represented by predicate calculus is necessary for the specification
of fixture and tool configurations.

[13] also designs a task-level programming kernel where related domain
knowledge, scheduling knowledge, world model parameters and constraint
knowledge are entered into the system by a domain expert via a knowledge editor.

In another work, Hwang and Ho propose to use a real time Petri nets (RTPN) to
model events, actions, states and temporal constraints [14].

[15] aims at developing agents that can achieve complex tasks in dynamic
environments with many unexpected happenings. The agent synthesizes new
plans at run time in order to achieve its goals. The dynamic nature of the
environment requires the agent to be able to deal with changes in its world in a
timely manner and so it has the ability to modify the plan during execution in
critical domains where it is infeasible to halt the activities while replanning.

Atlantis [16], a three-level hybrid system incorporates a deliberator that handles
planning and world modelling, a sequencer that handles initiation and termination
of low-level activities and addresses reactive-system failures to complete the task,
and a reactive controller that manages collection of primitive activities (Figure 1).
In sequencing layer, conditional sequencing occurs upon the completion of
various subtasks or the detection of failure. Cognizant failure [17] emphasizes the
situation when it cannot complete the assigned task. Task specific or more general
monitor routines detect changes in the environment and then interrupt the system
if cognizant failure occurs.

The work in [18] uses CAD databases and user queries to define the world to the
assembly planning system. In assembly planning, CAD modelling and user
queries are inevitable but a vision supported assembly planning system will help
getting rid of some of the work now carried out by modelling and queries.

In [19], the mobile robot builds a global world model based on sensory
information and uses it for path planning. This approach guarantees global

Figure 1. The Atlantis Architecture.

Invocation Results

Status Activation
SEQUENCING

DELIBERATIVE

ACTUATORS CONTROL SENSORS

convergence to the target. However, the reliance on a global model for navigation
requires frequent localization of the robot relative to the model, a process which is
difficult to attain due to the inherent uncertainties of practical sensors.

[20] is a work in concurrent assembly sequencing and fixturing. CAD tools are
used for the geometric description of the product. In [21], Blythe attempts to
describe a planner for domains with external events beyond the control and prior
parts of the planning knowledge. He assumes an agent that knows the types of
external events and their consequences on the world. He works with a planning
domain of an oil tanker that has run aground near the coast and began to leak oil
into the sea. The goal is to stop the water and coastline pollution. The available
actions include pumping the oil from the tanker into a secondary vessel,
surrounding the tanker with booms to contain the oil, using booms and other
equipment to prevent the oil from reaching the shore and cleaning up oil from
either the sea or the shore. The amount of spilled oil and the path of travel are
stochastic processes represented as exogenous events. A branching plan is
claimed to be successful.

In [22], behaviours provide an abstract interface for humans to enter plans, and
fuzzy logic provides a method for dealing with inexact variable values.

In [23], in order to plan for external events Blythe uses Markov Decision Process
models to predict the probability of an event to occur from its pasts occurrences.

The planner in [24] presents action representation methods for actions with
uncertain outcomes. In this work, the cause of the changes in the world are
defined as unknown initial world states, contingencies or exogenous events.
Contingencies occur as a result of the uncertain outcomes of the actions in the
plan whereas exogenous events are the events changing the environment
independent of these actions.

In [25], the complete integrated planning, executing and learning robot ROGUE,
which analyzes execution experience to detect patterns in the environment that
affect plan quality is presented. ROGUE extracts learning opportunities from
massive, continuous and probabilistic execution traces and correlates them with
environmental features to detect patterns in the form of situation dependent rules.

4. GENERAL PROBLEM ASSUMPTIONS
We summarize the basic assumptions for our case as follows: The objects in the
environment are cubic blocks located in square cells that form a square grid. The
blocks are identified with a type and a number. The world model is kept as a list
of entries in a data file. As an example, an entry (a, 2, 3, 5) indicates block 2 of

type a is on coordinates (3, 5). The number of blocks is user-defined. Each grid
cell can contain only one block at any time.

It is assumed that there is a vision system that has the capability to capture the
state of the world model whenever requested. The system is capable of generating
status information from the captured image. The objects are well positioned
within the cells so that there is no grasping problem. There’s no occlusion
problem as far as the vision system is concerned.

We address a class of cases where an initial and the goal state of the square grid
are given as the inputs to the planner, which finds a plan to carry the pieces from
their initial state positions to goal state positions. While the plan is being
executed, unexpected events that change the state of the environment randomly
are allowed. Both the pieces that have been carried to their goal positions and the
ones that haven’t been carried yet can be mixed-up. This causes the original plan
to become obsolete.

The above problem is similar to the Travelling Salesman Problem (TSP), which is
an NP-complete problem. In TSP after a city is visited, a new city is selected. In
our problem, there are two types of selections when the initial and the goal states
of the board are given as inputs to the planning algorithm. The first type of
selection is made among a possible set of goal destinations for a piece. More than
one piece for a certain type of piece is allowed on the board. If, at the time of
planning, there is more than one piece of a certain type, then there will be more
than one possible goal destinations, which the planning algorithm has to choose
among. In this selection type, the distance between a piece and the possible goal
destinations are considered for distance optimization. The second type of selection
is made among a set of pieces (which can be all of the same type, all of different
types or a mixture of same and different types) to be placed into their goal
positions. In this selection type, the distance between the robot arm and the
possible pieces is considered for distance optimization. TSP problem only makes
a selection of the second type where a city resembles a piece. However the TSP
problem doesn’t allow more than one city of the same type whereas we allow
more than one piece (more than one city) for a certain type of a piece (city). With
these limitations and without considering selection type 1, TSP problem turns out
to be a more constrained problem than our problem, which makes us consider our
problem as NP-complete too. Both of the selections in our problem use the
minimum distance heuristic from a piece to a goal destination or from the robot
arm to a piece.

The operators used in this problem are pick-and-place commands. An example
pick and place command can be pick-and-place (5, 3; 2, 7) which commands that
the block is to be moved from location (5, 3) to location (2, 7).

In our study, in addition to the hard physical constraints on the order of pick and
place commands [10], we attempt to generate time (energy) sub-optimal
sequences of pick and place commands. Since ours is not a pure assembly
planning work, some concepts such as specification of fixture and tool
configurations are not relevant. However, we aim at a general planning
architecture, extensible to as many pick-and-place problems (including assembly

plan

target config.

Figure 2. Proposed architecture

decision
current config.

world

current config.

previous config.

world recognition
vision

replan
decision controller

robot arm

planner

reactive
vision

improve
plan

planning) as possible. Such a planner might use a knowledge-based structure as in
[10] so that assembly planning constraints on tools and fixtures can easily be
defined within this knowledge base. That is, if this planner is also used for
assembly planning operations, the database can be configured differently to adapt
to different environments.

5. PROPOSED ARCHITECTURE
Our proposed architecture is given in Figure 2. In this architecture, the planner
generates an initial plan by taking user defined target configuration and current
world model as input. The current world model is supplied to the planner by a
vision recognition module. The vision recognition module takes the images of the
environment, recognizes objects in the environment and produces a current world
model as an initial configuration. Then the generated plan is put into execution.

During the execution of the plan and even at the generation step of this plan, a
reactive vision module receives images from the environment. When it is detected
that there’s an unexpected event occuring in the environment, the robot arm stops
execution and moves sideways. Then the controller activates replan decision
module which receives current configuration from the recognition vision module.
Improve plan module receives the original plan from the planner and generates a
better plan when possible.

The following attempts to compare the existing systems with our approach:

In [13], a knowledge base is used for monitoring and system control operations.
We follow the same approach however, our system uses vision information to
enter knowledge into the system whereas [13] uses a domain editor.

The Cypress system in [15] becomes aware of an unexpected happening after a
run time execution error whereas our system is expected to detect these events
before a run-time execution error with a continuous monitoring of the
environment via a vision system. Although we use a vision system, there still
might be situations that we can’t predict some unexpected happenings previously
so reactive response and failure recovery might be necessary in our system as
well.

In [17], monitor routines for sensing the environment are added to Atlantis
architure to perform complex navigation tasks. In our architecture, we both use
vision sensing and aim at optimizing the time (energy) of stationary robot arms.

In our architecture, we define some simple behaviours as in [22], but contrary to
[22], we don’t need fuzzy logic because we don’t have inexact variable values. As
an example, a piece is assumed to be either in a given location or not.

Contrary to [23] and [24], we neither have need for the dependence on the
previous occurrences of an event to predict its probability of occurrence in future
nor we deal with contingencies.

6. EXAMPLE PROBLEM: LEGO Chess Robot
We implemented our proposed architecture on an example problem which we call
it mixed chessboard pieces problem [1]. The square grid mentioned in general
problem definition is a chessboard and the pieces are the chessboard pieces.

Figure 3. Gantry robot (left), view from the camera (right).

Our experimental gantry robot was built from 2 LEGO Mindstorms robotic
construction sets and few additional parts (Figure 3). Two LEGO computer bricks
receive commands from the workstation through Interrupt Request (IR) tower and
control 5 motors (2 for row axis, one for column and vertical axes, and two to
close and open the gripper), and 4 rotation sensors (2 for row axis, one for column
and vertical axes). Rotation sensors are used as a reactive feedback for positioning
the gripper. The camera is fixed above the scene. During the robot operation, parts
of the chessboard are hidden.

The hybrid reactive control architecture for the chessboard example problem with
planner is inspired by the Behavior-Based Robotics [2] and is an instantiation of
the general problem architecture. It is built bottom-up from independent behavior
modules that can run in parallel, have direct access to the robot’s sensors and
actuators, and send signals/data to each other (Figure 4). According to the initial
plan that propogates from heuristic planner [1] to plan sequencer, three primitive
behaviors: arm mover, grasper, releaser are activated. Both primitive behaviors
and replan decision module [1] receive an unexpected event signal generated by
the bitmap comparator behavior module. Initial plan is sent also to a Genetic
Algorithm (GA) plan improver, which is notified about the progress of execution
(next command) by plan sequencer. Each time a more efficient plan is generated,
a plan update signal is sent to the plan sequencer and replan decision module,
which receives also the initial plan so that it can keep track of the current expected
situation on the chessboard. Before the decision is taken, replan decision module

Figure 4. Control architecture for chess example problem.

heuristic
planner

plan sequencer

GA plan improver

replan decision

bitmap comparator

init robot

arm mover

grasper

releaser

move sideways

plan startup

camera

current
config. plan update

plan update next
cmd

move away
motors 1-5
rot. sensors 1-4

camera

move to

init

grasp

release

unexpected event

unexpected event

target
configuration

decision

NN
recognition
vision

uses move arm sideways primitive behavior and asks the Neural Network (NN)
recognition vision module to obtain current situation.

Heuristic planner receives the target configuration in a data file from the user and
current configuration from the NN recognition vision module. It generates a
sequence of plan steps which carries the chessboard pieces from their initial
positions to their final positions. Replan decision module gives a decision of what
to do in case of an unexpected event making a selection among decision
alternatives [1].

NN recognition vision module consists of an image capture module (implemented
using a standard web camera with TWAIN support), image preprocessing module,
which clips and scales the grid cells out of the bitmap image so that 8x8 gray-
scale images are obtained and sent as an input vector to a 3-layer feedforward
neural network. Neural network classifies each grid cell as either empty, one of
the block types or unknown. Network is trained with Backpropogation learning
algorithm on training images during the design of the system. In order to extend
the set of block types, the network has to be re-trained. In our practical
experiments, we used network with 7 output categories, 24 hidden layer neurons,
learning rate 0.3, and momentum 0.1.

Reactive vision module (bitmap comparator) continually obtains an image from
the camera and compares the area of borders of the chessboard to the previous
frame. If any disturbance is detected besides the movements of the robot that are
predicted according to the current plan execution, start of the unexpected event is
detected and signal is sent to other behavior modules. When the disturbance
vanishes, the end of the unexpected event is sent out after a short timeout.

The plan improvement module is a process running in the background, using up
the remaining CPU resources. The module is a Genetic Algorithm [26] that
searches the space of all possible plans. Members of population are individual
plans that reach the target configuration from the current state. While the plan is
executed by the robot, the beginning of the genotype becomes fixed and only the

remaining commands are affected by crossover and mutation operators. A special
crossover operator is used so that only feasible plans are generated from the two
parent plans.

7. CONCLUSION
In this study, a vision supported hybrid architecture is proposed for a class of
robotic pick-and-place problems and is implemented in an experimental robotic
environment. Our work concentrates mainly on the architectural issues where the
reactive aspect of the control is combined with high level planning. In future
work, we will elaborate more on the high-level planning side and enhance our
algorithmic approach with knowledge base containing rules and constraints of a
particular domain.

REFERENCES
[1] Ş. Yıldırım and T. Tunalı, “A new methodology for dealing with uncertainty
in robotic tasks”, XIV. Int. Symp. on Comp.& Inf.Sci., Kuşadası, TURKİYE,
1999.
[2] R. C. Arkin, “Behaviour-Based Robotics”, The MIT Press, Cambridge,
Massachusetts, 1999.

[3] H. Jack, “A Historical Review of Artificial Intelligence Planning”, 1998,
Grand Valley State University.

[4] E. Sacerdoti, “A Structure for Plans and Behaviour”, Elsevier, North-Holland,
New York, 1977.

[5] R. Fike, P. Hart and N. Nilsson, “Learning and Executing Generalized Robot
Plans”, Readings in Artificial Intelligence, Nilsson and Webber, eds., Tioga
Publishing, Palo Alto, California, 1981, pp. 231-249.

[6] E. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces”, Artificial
Intelligence, V. 5, pp. 115-135, 1974.

[7] A. Tate, “Generating Project Networks”, Proceedings IJCAI-77, Cambridge,
Massachusetts, 1977, pp. 888-893.

[8] S. Vere, “Planning in Time: Windows and Durations for Activities and
Goals”, IEEE Transactions on Pattern Analysis and Machine Intelligence, V. 5,
pp. 246-267, 1983.

[9] M. Stefik, “Planning and Metaplanning”, Readings in Artificial Intel., Nilsson
and Weber, eds., Tioga Publishing, Palo Alto, California, 1981, pp. 272-286.

[10] Y. F. Huang and C. S. G. Lee, “A Framework of Knowledge-based
Assembly Planning”, Proceedings of the IEEE International Conference on
Robotics and Automation, Sacramento, California, April 1991.

[11] J. D. Wolter, “On the Automatic Generation of Plans for Mechanical
Assembly”, Ph.D thesis, Univ. of Michigan, Dept. of Computer, Information and
Control Engineering, Sept. 1988.

[12] L. S. Homem de Mello, “Task Sequence Planning for Robotic Assembly”,
Ph.D thesis, Canegie Mellon Univ., Dept. of Electrical and Computer
Engineering, May 1989.

[13] C.P. Hwang and C. S. Ho, “ Development of a Task-Level Programming
Kernel for Robots using RTSDE”, Proceedings of 1st Chinese World Congress on
Intelligent Control and Intelligent Automation, Beijing, Aug. 26-30, 1993.

[14] C.P. Hwang and C. S. Ho, “ RTPN-based Task Plan Modeling and
Verification for Manufacturing Cells”, Proceedings of International Symposium
on Artificial Intelligence, Monterrey, Mexico, Sep. 20-24, 1993.

[15] D. E. Wilkins, K. L. Myers, J. D. Lowrance and L. P. Wesley, “Planning and
Reacting in Uncertain and Dynamic Environments”, SRI International, 333
Ravenswood Ave., Menlo Park, Ca. 94025, 1994.

[16] E.Gat, “Reliable Goal-Directed Reactive Control of Autonomous Mobile
Robots,” Ph.D thes., Virginia Polytechnic Inst. & State Univ., Blacksburg, 1991.

[17] E. Gat and G. Dorais, “Robot Navigation by Conditional Sequencing,”
Proceedings of the IEEE International Conference on Robotics and Automation ,
1994, pp. 1293-99.

[18] R. H. Wilson, “Minimizing User Queries in Interactive Assembly Planning”,
IEEE Transactions on Robotics and Automation, Vol. 11, No. 2, April, 1995.

[19] I. Kamon, E. Rivlin, “Sensory-Based Motion Planning with Global Proofs”,
IEEE Transactions on Robotics and Automation, Vol. 13, No. 6, December 1997.

[20] B. Romney, “Atlas: An Automatic Assembly Sequencing and Fixturing
System”, Proc. Intl. Conf. on the Theory and Practice of Geometric Modelling,
Tübingen, Germany, October 1996.

[21] J. Blythe, “A Representation for Efficient Planning in Dynamic Domains
with External Events”, CMU, 1996.

[22] D. S. Blank and J. O. Ross, “Learning in a Fuzzy Logic Robot Controller”,
the Proceedings of 1997 Meeting of the American Association of Artificial
Intelligence, 1997.

[23] J. Blythe, “Planning under Uncertainty in Dynamic Domains”, Ph.D Thesis,
CMU, 1997.

[24] L. Pryor and G. Collins, “Planning for contingencies: A decision-based
approach”, Journal of Artificial Intelligence Research Vol. 4, AI Access
Foundation and Morgan Kaufmann Publishers, 1996.

[25] K. Z. Haigh, “Situation-Dependent Learning for Interleaved Planning and
Robot Execution”, Ph.D thes., School of Com. Sci., Carnegie Mellon Univ., 1998.

[26] D E Goldberg, ”Genetic Algorithms in Search, Optimization, and Machine
Learning”, Addison-Wesley, Reading, MA, 1989.

