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ABSTRACT 
Robotic task planning for a class of problems involving sequences of pick-and-
place operations is examined. Major planners developed in the literature are 
overviewed from the point of view of the introduced class of problems. A new 
architecture with reactive aspects is proposed. The basic properties of the 
architecture are discussed. Finally, an implementation of the architecture is 
explained. 
Keywords:  robotics, unstructured robotic environments, operation safety and 
efficiency, planners, reactive systems, hybrid systems. 

1. INTRODUCTION 
Present robot arms carry out predefined tasks in well defined environments where 
all operations are completed successfully. However, if an unexpected event occurs 
in the environment, an operator has to interfere with the robot operation and 
typically reprogram the robot arm manually. If mechanisms can be developed to 
tackle with the unexpected events, then robot arms can be used safely in 
unstructured environments. Bearing this fact in mind, robotics and AI people 
work on  building up safe and efficient robotic architectures to solve task planning 
problem in presence of unexpected events. 

This study concentrates on a high level planning domain where a planner receives 
an initial and a target configuration of the environment and generates a sequential 
plan of operations that transform the initial state of the environment to the target 
state. We consider a class of pick-and-place problems which fit some predefined 
constraints. The planner is expected to cope with a class of unexpected events 
occuring in the environment. 

Unexpected events or actions caused by external intruders change a random part 
of the environment at a random time. They differ from actions in a plan sequence. 
Unexpected events cause the generated plans to become obsolete. Consequently, 
either the current state of the environment can be taken back to the state before the 
unexpected event occurred or a completely new plan can be generated and 
executed [1]. The second option is chosen when the previous experience suggests 
that generating a new plan would take less total time than moving back to the 
previous state and continuing with the original plan. However, the state of the 
environment after an unexpected event might be closer to the target configuration 
and the complete replanning might be still too time consuming. In such a case, the 
                                                 
∗ International Computing Institute, Ege University, Bornova Izmir Turkey, 
   yildirim, tunali@ube.ege.edu.tr 
 

∗∗ Department of Computer and Information Sciences, Norwegian University of Science and                  
Technology, Trondheim Norway,  

   pavel.petrovic@idi.ntnu.no 
 

TAINN 2000 



system finds the “most” time-saving sequence of operations that will move the 
state of the environment to a state that is on the path of the original plan. 

This paper is organized as follows: Section 2 explains and provides examples of 
planners, reactive systems and hybrid systems in literature. Section 3 discusses 
related planners further from our problem’s point of view. Section 4 defines our 
general problem, for which a general architecture is shown in section 5. An 
implementation is given in  section 6. Finally, in section 7, concluding remarks 
are made. 

2. DELIBERATIVE, REACTIVE AND HYBRID SYSTEMS 
Current robotic systems are deliberative (plan and use knowledge representation), 
reactive or hybrid [2]. Deliberative systems rely mainly on symbolic reasoning 
and world representation whereas reactive systems are reflexive. The speed of a 
response of a robotic system increases as it becomes more reactive. On the other 
hand, the predictive capabilities of the systems increase while the systems get 
more deliberative. Also deliberative systems depend on accurate and complete 
world models while reactive robotic systems don’t tend to use world models at all.  

In common sense, the word “planning” refers to the process of computing several 
steps of a problem solving procedure before executing any step. There exists vast 
amount of literature about planners. Basic types of planners are non-hierarchical, 
hierarchical, skeletal and opportunistic [3]. Non-hierarchical planners use goals 
directly to find operators as in NOAH [4] and STRIPS [5] planners. In 
hierarchical planners, planning begins at an abstract level, but later abstract goals 
are expanded into more detailed subgoals as in ABSTRIPS [6], NONLIN [7] and 
DEVISER [8]. Skeletal planners store successful earlier plans in a plan database. 
Before planning begins, goals are compared against the skeletal plans. If one or 
more plans in the database satisfy the current goals and the current world model, 
the best plan will be chosen as in MOLGEN [9]. Opportunistic planners develop 
plans in two stages: parts of a plan may be arranged with backtracking and later 
parts are linked together and enlarged as opportunities become available.  

Reactive systems were developed in response to several apparent drawbacks of 
deliberative reasoners including a perceived lack of responsiveness in 
unstructured and uncertain environments due to both the requirements of world 
modelling and the limited communication pathways. Inaccurate information can 
cause the deliberative reasoner’s reasoning to be totally incorrect. In a dynamic 
world with arbitrarily moving objects (e.g. in a crowded corridor), it is potentially 
dangerous to rely on past data that may no longer be valid. Representational world 
models are therefore generally constructed from both prior knowledge about the 
environment and sensory data in support of deliberation. Some researchers view 
planning only as a way of how to avoid figuring out what to do next. 

In the real world of biological agents, the conditions favoring purely deliberative 
planners generally do not exist [2]. To cope with the problems of real world 
environments, methods like behaviour-based reactive control are necessary [2]. To 
make use of best of two methods, hybrid deliberative/reactive robotic 
architectures have recently emerged combining aspects of traditional AI symbolic 
methods and their use of abstract representational knowledge, but maintaining the 



goal of providing the responsiveness, robustness, and flexibility of purely reactive 
systems.  

3. EXISTING ROBOTIC TASK PLANNERS 
While the existing task planners try to solve planning problems for a wide variety 
of areas, we prefer to limit the planning problem to sequences of pick-and-place 
operations. We think that, the simplicity of the case can further help us in 
developing the idea. On the other hand, these type of operations are typical in 
many areas, for example, assembly planning. An assembly plan is an ordered list 
of instructions specifying what components to be assembled, what fixtures and 
tools to be used, etc., such that a product can be successfully assembled with the 
equipment available in an assembly cell [10]. The ordering of instructions in an 
assembly plan is important because placing a component to a certain location 
might prevent another component from being placed to its destination. [11,12] are 
two approaches which represent assembly plans as an ordered list of components 
and subassemblies so that generated assembly plans are feasible.  On the other 
hand, knowledge-based approaches [10], where the knowledge involved in the 
problem can be represented by predicate calculus is necessary for the specification 
of fixture and tool configurations.  

[13] also designs a task-level programming kernel where related domain 
knowledge, scheduling knowledge, world model parameters and constraint 
knowledge are entered into the system by a domain expert via a knowledge editor.  

In another work, Hwang and Ho propose to use a real time Petri nets (RTPN) to 
model events, actions, states and temporal constraints [14].  

[15] aims at developing agents that can achieve complex tasks in dynamic  
environments with many unexpected happenings. The agent synthesizes new 
plans at run time in order to achieve its goals. The dynamic nature of the 
environment requires the agent to be able to deal with changes in its world in a 
timely manner and so it has the ability to modify the plan during execution in 
critical domains where it is infeasible to halt the activities while replanning.  

Atlantis [16], a three-level hybrid system incorporates a deliberator that handles 
planning and world modelling, a sequencer that handles initiation and termination 
of low-level activities and addresses reactive-system failures to complete the task, 
and a reactive controller that manages collection of primitive activities (Figure 1). 
In sequencing layer, conditional sequencing occurs upon the completion of 
various subtasks or the detection of failure. Cognizant failure [17] emphasizes the 
situation when it cannot complete the assigned task. Task specific or more general 
monitor routines detect changes in the environment and then interrupt the system 
if cognizant failure occurs.  

The work in [18] uses CAD databases and user queries to define the world to the 
assembly planning system. In assembly planning, CAD modelling and user 
queries are inevitable but a vision supported assembly planning system will help 
getting rid of some of the work now carried out by modelling and queries. 

In [19], the mobile robot builds a global world model based on sensory 
information and uses it for path planning. This approach guarantees global 



Figure 1. The Atlantis Architecture. 
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convergence to the target. However, the reliance on a global model for navigation 
requires frequent localization of the robot relative to the model, a process which is 
difficult to attain due to the inherent uncertainties of practical sensors.  

[20] is a work in concurrent assembly sequencing and fixturing. CAD tools are 
used for the geometric description of the product. In [21], Blythe attempts to 
describe a planner for domains with external events beyond the control and prior 
parts of the planning knowledge. He assumes an agent that knows the types of 
external events and their consequences on the world. He works with a planning 
domain of an oil tanker that has run aground near the coast and began to leak oil 
into the sea. The goal is to stop the water and coastline pollution. The available 
actions include pumping the oil from the tanker into a secondary vessel, 
surrounding the tanker with booms to contain the oil, using booms and other 
equipment to prevent the oil from reaching the shore and cleaning up oil from 
either the sea or the shore. The amount of spilled oil and the path of travel are 
stochastic processes represented as exogenous events. A branching plan is 
claimed to be successful.  

In [22], behaviours provide an abstract interface for humans to enter plans, and 
fuzzy logic provides a method for dealing with inexact variable values. 

In [23], in order to plan for external events Blythe uses Markov Decision Process 
models to predict the probability of an event to occur from its pasts occurrences.  

The planner in [24] presents action representation methods for actions with 
uncertain outcomes. In this work, the cause of the changes in the world are 
defined as unknown initial world states, contingencies or exogenous events. 
Contingencies occur as a result of the uncertain outcomes of the actions in the 
plan whereas exogenous events are the events changing the environment 
independent of these actions. 

In [25], the complete integrated planning, executing and learning robot ROGUE, 
which analyzes execution experience to detect patterns in the environment that 
affect plan quality is presented. ROGUE extracts learning opportunities from 
massive, continuous and probabilistic execution traces and correlates them with 
environmental features to detect patterns in the form of situation dependent rules.  

4. GENERAL PROBLEM ASSUMPTIONS  
We summarize the basic assumptions for our case as follows: The objects in the 
environment are cubic blocks located in square cells that form a square grid. The 
blocks are identified with a type and a number. The world model is kept as a list 
of entries in a data file. As an example, an entry (a, 2, 3, 5) indicates block 2 of 



type a is on coordinates (3, 5). The number of blocks is user-defined. Each grid 
cell can contain only one block at any time. 

It is assumed that there is a vision system that has the capability to capture the 
state of the world model whenever requested. The system is capable of generating 
status information from the captured image. The objects are well positioned 
within the cells so that there is no grasping problem. There’s no occlusion 
problem as far as the vision system is concerned. 

We address a class of cases where an initial and the goal state of the square grid 
are given as the inputs to the planner, which finds a plan to carry the pieces from 
their initial state positions to goal state positions. While the plan is being 
executed, unexpected events that change the state of the environment randomly 
are allowed. Both the pieces that have been carried to their goal positions and the 
ones that haven’t been carried yet can be mixed-up. This causes the original plan 
to become obsolete.  

The above problem is similar to the Travelling Salesman Problem (TSP), which is 
an NP-complete problem. In TSP after a city is visited, a new city is selected. In 
our problem, there are two types of selections when the initial and the goal states 
of the board are given as inputs to the planning algorithm. The first type of 
selection is made among a possible set of goal destinations for a piece. More than 
one piece for a certain type of piece is allowed on the board. If, at the time of 
planning, there is more than one piece of a certain type, then there will be more 
than one possible goal destinations, which the planning algorithm has to choose 
among. In this selection type, the distance between a piece and the possible goal 
destinations are considered for distance optimization. The second type of selection 
is made among a set of pieces (which can be all of the same type, all of different 
types or a mixture of same and different types) to be placed into their goal 
positions. In this selection type, the distance between the robot arm and the 
possible pieces is considered for distance optimization. TSP problem only makes 
a selection of the second type where a city resembles a piece. However the TSP 
problem doesn’t allow more than one city of the same type whereas we allow 
more than one piece (more than one city) for a certain type of a piece (city). With 
these limitations and without considering selection type 1, TSP problem turns out 
to be a more constrained problem than our problem, which makes us consider our 
problem as NP-complete too. Both of the selections in our problem use the 
minimum distance heuristic from a piece to a goal destination or from the robot 
arm to a piece.  

The operators used in this problem are pick-and-place commands. An example 
pick and place command can be pick-and-place (5, 3; 2, 7) which commands that 
the block is to be moved from location (5, 3) to location (2, 7).  

In our study, in addition to the hard physical constraints on the order of pick and 
place commands [10], we attempt to generate time (energy) sub-optimal 
sequences of pick and place commands. Since ours is not a pure assembly 
planning work, some concepts such as specification of fixture and tool 
configurations are not relevant. However, we aim at a general planning 
architecture, extensible to as many pick-and-place problems (including assembly 
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planning) as possible. Such a planner might use a knowledge-based structure as in 
[10] so that assembly planning constraints on tools and fixtures can easily be 
defined within this knowledge base. That is, if this planner is also used for 
assembly planning operations, the database can be configured differently to adapt 
to different environments.  

5. PROPOSED ARCHITECTURE  
Our proposed architecture is given in Figure 2. In this architecture, the planner 
generates an initial plan by taking user defined target configuration and current 
world model as input. The current world model is supplied to the planner by a 
vision recognition module. The vision recognition module takes the images of the 
environment, recognizes objects in the environment and produces a current world 
model as an initial configuration. Then the generated plan is put into execution. 

During the execution of the plan and even at the generation step of this plan,  a 
reactive vision module receives images from the environment. When it is detected 
that there’s an unexpected event occuring in the environment, the robot arm stops 
execution and moves sideways. Then the controller activates replan decision 
module which receives current configuration from the recognition vision module. 
Improve plan module receives the original plan from the planner and generates a 
better plan when possible. 

The following attempts to compare the existing systems with our approach: 

In [13], a knowledge base is used for monitoring and system control operations. 
We follow the same approach however, our system uses vision information to 
enter knowledge into the system whereas [13] uses a domain editor. 

The Cypress system in [15] becomes aware of an unexpected happening after a 
run time execution error whereas our system is expected to detect these events 
before a run-time execution error with a continuous monitoring of the 
environment via a vision system. Although we use a vision system, there still 
might be situations that we can’t predict some unexpected happenings previously 
so reactive response and failure recovery might be necessary in our system as 
well. 

In [17], monitor routines for sensing the environment are added to Atlantis 
architure to perform complex navigation tasks. In our architecture, we both use 
vision sensing and aim at optimizing the time (energy) of stationary robot arms. 



In our architecture, we define some simple behaviours as in [22], but contrary to 
[22], we don’t need fuzzy logic because we don’t have inexact variable values. As 
an example, a piece is assumed to be either in a given location or not.  

Contrary to [23] and [24], we neither have need for the dependence on the 
previous occurrences of an event to predict its probability of occurrence in future  
nor we deal with contingencies.  

6. EXAMPLE PROBLEM: LEGO Chess Robot 
We implemented our proposed architecture on an example problem which we call 
it mixed chessboard pieces problem [1]. The square grid mentioned in general 
problem definition is a chessboard and the pieces are the chessboard pieces. 

Figure 3. Gantry robot (left), view from the camera (right). 

Our experimental gantry robot was built from 2 LEGO Mindstorms robotic 
construction sets and few additional parts (Figure 3). Two LEGO computer bricks 
receive commands from the workstation through Interrupt Request (IR) tower and 
control 5 motors (2 for row axis, one for column and vertical axes, and two to 
close and open the gripper), and 4 rotation sensors (2 for row axis, one for column 
and vertical axes). Rotation sensors are used as a reactive feedback for positioning 
the gripper. The camera is fixed above the scene. During the robot operation, parts 
of the chessboard are hidden. 

The hybrid reactive control architecture for the chessboard example problem with 
planner is inspired by the Behavior-Based Robotics [2] and is an instantiation of  
the general problem architecture. It is built bottom-up from independent behavior 
modules that can run in parallel, have direct access to the robot’s sensors and 
actuators, and send signals/data to each other (Figure 4). According to the initial 
plan that propogates from heuristic planner [1] to plan sequencer, three primitive 
behaviors: arm mover, grasper, releaser are activated. Both primitive behaviors 
and replan decision module [1] receive an unexpected event signal generated by 
the bitmap comparator behavior module.  Initial plan is sent also to a Genetic 
Algorithm (GA) plan improver, which is notified about the progress of execution 
(next command) by plan sequencer. Each time a more efficient plan is generated, 
a plan update signal is sent to the plan sequencer and replan decision module, 
which receives also the initial plan so that it can keep track of the current expected 
situation on the chessboard. Before the decision is taken, replan decision module 



Figure 4. Control architecture for chess example problem. 
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uses move arm sideways primitive behavior and asks the Neural Network (NN) 
recognition vision module to obtain current situation. 

Heuristic planner receives the target configuration in a data file from the user and 
current configuration from the NN recognition vision module. It generates a 
sequence of plan steps which carries the chessboard pieces from their initial 
positions to their final positions. Replan decision module gives a decision of what 
to do in case of an unexpected event making a selection among decision 
alternatives [1]. 

 

 

NN recognition vision module consists of an image capture module (implemented 
using a standard web camera with TWAIN support), image preprocessing module, 
which clips and scales the grid cells out of the bitmap image so that 8x8 gray-
scale images are obtained and sent as an input vector to a 3-layer feedforward 
neural network. Neural network classifies each grid cell as either empty, one of 
the block types or unknown. Network is trained with Backpropogation learning 
algorithm on training images during the design of the system. In order to extend 
the set of block types, the network has to be re-trained. In our practical 
experiments, we used network with 7 output categories, 24 hidden layer neurons, 
learning rate 0.3, and momentum 0.1.  

Reactive vision module (bitmap comparator) continually obtains an image from 
the camera and compares the area of borders of the chessboard to the previous 
frame. If any disturbance is detected besides the movements of the robot that are 
predicted according to the current plan execution, start of the unexpected event is 
detected and signal is sent to other behavior modules. When the disturbance 
vanishes, the end of the unexpected event is sent out after a short timeout. 

The plan improvement module is a process running in the background, using up 
the remaining CPU resources. The module is a Genetic Algorithm [26] that 
searches the space of all possible plans. Members of population are individual 
plans that reach the target configuration from the current state. While the plan is 
executed by the robot, the beginning of the genotype becomes fixed and only the 



remaining commands are affected by crossover and mutation operators. A special 
crossover operator is used so that only feasible plans are generated from the two 
parent plans. 

7. CONCLUSION 
In this study, a vision supported hybrid architecture is proposed for a class of 
robotic pick-and-place problems and is implemented in an experimental robotic 
environment. Our work concentrates mainly on the architectural issues where the 
reactive aspect of the control is combined with high level planning. In future 
work, we will elaborate more on the high-level planning side and enhance our 
algorithmic approach with knowledge base containing rules and constraints of a 
particular domain. 
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