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Abstract In this paper, a replanning framework and a case study based on our learning based robotic 
replanning framework that can handle unexpected events in dynamic worlds are presented. This study presents 
an original replanning method which uses an alternative based action selection mechanism to select the most 
efficient action path among possible alternative action paths. The method stores the costs of actions paths from 
previous executions as an experience and uses it for improving its future action selection decisions. The fact that 
a continous vision feedback is supplied to the symbolic planning level (highest level of abstraction) is also a 
contribution of this study since this way, the architecture detects the presence of unexpected events, generates an 
updated model of the environment and discards or modifies the existing obsolete action path in case of an 
unexpected event(s). 
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1 Introduction 

One of the purposes of Artificial Intelligence (AI) is to form control algorithms that allow an agent to 
realize its goals by synthesizing a sequence of actions. The subfield of AI called robotics works on 
both robotic planning and other aspects of robots.  However, whatever the method for generating a 
plan is, it is not realistic to expect a robotic agent to realize a task only by executing a generated plan 
and without considering the unexpected events and uncertainty in a dynamic world. Hence, the robotic 
agents should have the capability to discard obsolete plans in case of unexpected happenings and  
replan, that is, generate new plans applicable in current situation obtained after the unexpected event 
or modify an existing plan in a way to make it applicable in the new situation. 
There have been research on handling unexpected events and uncertainty in dynamic environments 
with the indicated scope however, none of these, to our knowledge, has the capability of synthesizing 
alternative action paths to the goal and selecting the one with the least cost for execution [1, 2, 3, 4]. 
However,  the alternatives which are to be considered to make a selection among are as follows: 

1. Is there an already stored plan which is known to be a minimal cost from the current 
situation to the goal?  

2. Should the situation after the unexpected happening be transformed back to the state 
before the unexpected event happened by eliminating the effects of the unexpected 
happening? 

3. Should the robotic agent just synthesize a new action path from the current situation to 
the goal with discarding the original plan and hence computing a new plan? 

Existing approaches have the tendency to always use the same alternative in case of all unexpected 
happenings instead of making a selection among them for the least cost one. The architecture to use 
the selection based replanning method should have supportive features to make selection mechanism 
possible to implement. The most important feature of the architecture is the continous vision feedback 
to the planning level which helps to detect the occurence of unexpected happening and form a new 
world model to synthesize a plan for in place of the obsolete plan. The other important feature is the 
learning capability which improves the selection based decision in time and allows to take better 
decisions. Better decision is the one that guesses (selects) the alternative which encapsulates the least 
cost path correctly. This paper is organized as follows: in Section 2, our replanning architecture to 
handle unexpected events will be described. Section 3 will present a case study for unexpected event 
handling and replanning. Finally, in Section 4, concluding remarks will be made. 
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2 The Vision Guided Intelligent Planning and Replanning Architecture 
The Vision Guided Intelligent Planner (VGP) is the implementation of a planning architecture 
developed during our studies on unexpected event handling in dynamic environments. It is based on 
the 3T architecture.  Although more can be found on the architecture else where [5,6], in case of 
unexpected events, there might be a previously stored optimal cost plan in the plan database from the 
unexpected state to the goal state. In such a case, the optimal plan is retrieved and executed. In case 
that there’s not a stored optimal plan, a new plan to backtrack to the state before the unexpected event 
can be generated and then the rest of original plan can be executed. Some existing planners use that 
approach [7, 8]. Another approach is to generate a new plan directly from the unexpected state to the 
goal state. This approach is efficient when the unexpected state is so different from the state before the 
unexpected event occured that it’s less costly to generate and execute a new plan from the unexpected 
state to the goal state. The amount of  difference between any two states is represented by a distance 
metric called “dm”.  
Whether “dm” value is small or not is decided by comparing the “dm” value with a threshold “thr”. If 
an unexpected event occured and there’s an optimal plan stored from the resulting unexpected state to 
the goal state, then that plan will be retrieved from the database and executed. If not, depending on 
whether the “dm” value is small or not, another alternative will be chosen. If the “dm” value is smaller 
than “thr” or equal to it then the unexpected state is backtracked to the state before the unexpected 
happening occured and the rest of original plan is executed (alternative 1). In such a case, new_plan is 
a plan that transforms the unexpected state to the state before the unexpected happening occured. Then 
a cost for using alternative 1, considering the planning time and the total distance to be travelled to 
reach the goal state is calculated. Otherwise a plan for alternative 2 which is to transform the 
unexpected state to the goal state is generated and a cost for it is calculated. Whichever alternative is 
used, the related cost is stored in a cost table to improve future decisions for alternative selection.  
At the beginning, the alternative selection mechanism of replanning might not guess the least cost 
alternative correctly since the threshold value is assigned randomly. This value needs to be adjusted as 
more costs are calculated and stored for occuring unexpected events in time. The costs are kept in a 
cost table (Figure 1) with dimensions P ( > 0 ) and Q ( > 0 ). The threshold value divides the table into 
two regions: the left region displays alternative 1 cost values whereas as the right region displays 
alternative 2 cost values.  

 
 
 
 
 
 
 
 
 
 
 
  

Figure 1 A Cost Table 

The distance metric values in the table show the possible values for the difference between the 
unexpected state and the state before the unexpected happening. For instance, the values of 1, 2 etc.in 
the first row of the table symbolize the situation when the difference is 1, 2 etc. respectively. This 
difference will either be equal to, smaller, or bigger than the threshold value. Each cost C(dm, n) in a 
column defines the cost for a selected alternative after an unexpected happening with the indicated dm 
occurs. If this is the first unexpected happening to occur for that “dm” value then cost will be placed at 
col = dm, and row =1, that is at (dm, 1).  On the other hand, if it’s the nth unexpected  happening to 
occur for the same “dm” value,  then it will be placed at col = dm, and row = n, that is, at (dm, n).    
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The threshold value is not adjusted until the cost table is completely full. Each cost table entry 
symbolizes an execution for a different initial and goal state pair. When the table is full, the average of 
the values in each column is taken. An abnormal difference between the column with the threshold 
value and the previous column indicates that a threshold adjust operation is necessary. The idea behind 
the threshold adjust operation is that if the averages of the costs on the left region of the threshold are 
too different from the averages of costs on the right region then the threshold is not stabilized yet and 
needs to be adjusted. The difference is expected to have a reflection on the averages of the threshold 
column and the column before it. The curve with the averages of each column plotted is given in 
Figure 2. In the figure, there is a difference between the average of the costs in left region and the 
averages of the costs on the right region. For that reason, the band width of the columns up to the 
threshold value is different from the band width of the columns beyond the threshold value.  
Adjustment of threshold value is done by increasing or decreasing the threshold value by a certain 
amount to stabilize it at the best value after several adjustments.  A heuristic is used to decide on an 
increase or a decrease. The heuristic is that if there’s an increase from the previous column to the 
threshold column, then alternative 1 region column averages have a lower band width than alternative 
2 region column averages. For that reason, the averages in region 1 will be increased whereas the 
averages in region 2 will be decreased by excluding the column previous to the threshold column from 
region 1 to region 2. This is accomplished by shifting the value of the threshold one column to the 
right.  However, if there’s a decrease from the previous column to the threshold column, then the 
threshold value is decreased; that is, it is shifted to the left one column on the cost table. The threshold 
adjust algorithm is given in Figure 3. 

 
 
 
 
   
 
 

 

 

Figure 2 Column Averages Curve 

A cost function to calculate the entries of a cost table is defined as follows:  
Cp = c1 Tp + c2 Ep     where c1 and c2 are constants  (1) 
TP: the time to generate a new plan for a given path p.  
Ep: the amount of energy that a robot arm will spend to accomplish a plan for a given path p. 
Thus, costs for Alternative 1 and Alternative2 are defined as follows: 
C1 = c1 T1 + c2 E1 
C2 = c1 T2 + c2 E2 
T1, T2 are the planning times to generate a new plan respectively for Alternative 1 and 

Alternative 2. 
E1, E2 are the energy amounts spent by the robot arm to execute plans for Alternative 1 and 

Alternative 2. 
The threshold adjust operation has a “learning” feature. The system gains more information on 
execution as time passes and more unexpected events occur. This leads the system to give more 
correct decisions in time. This method has been developed during this study and it is novel. This 
method, as in other methods in literature, increases the performance P (the probability of giving the 
correct decision in case of an unexpected event) of the system making use of the experience E 
(accumulated cost values in time) for a given class T (blocks world problems) of defined tasks. Some 
learning mechanisms improve a learning function whereas with the one discussed in this study the 
threshold value is learnt by improving it in time.  
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Threshold Adjust Algorithm: 
1. Calculate an average for each column of the cost table and keep the averages in an 

average cost array. 
2. Check whether there is an abnormal increase or decrease between the threshold column 

and the previous column. 
3. If there is an abnormal difference; 

If the difference is an increase, the threshold value is shifted right by step-size. 
If the difference is a decrease, the threshold value is shifted left by step-size. 

 Empty cost table to store new cost values. 
4. If this is an increase after repeated abnormal decreases or a decrease after repeated 

abnormal increases then this is the stabilized threshold value. Exit. 
5. Else do nothing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Threshold Adjust Algorithm 

3 A Case Study for Implementing VGP Architecture 
The Vision Guided Planner (VGP), has been implemented on two blocks world problems. This case 
study depends on first of these problems which is mixed pieces problem. Details about other problem 
and possible application domains can be found in [5, 6]. A definition for the mixed pieces problem is 
as follows: Given are the initial and goal states in a two dimensional grid like space. Blocks are placed 
in  the cells of the grid. The problem is to find the sequence of actions with minimum cost from the 
initial state to the goal state. The key point in this problem is that there can be several blocks of a 
block type and each block of a block type can be placed in any of the destination places for the given 
block type. The following are other important issues of the problem: 

1) A destination position of a block can be occupied by another block. 
2) The blocks in a work space can be mixed by an external agent during execution of an initial to 

goal state plan. The external agent is interpreted as an unexpected event and the existing plan will 
become obsolete due to the change in the workspace so replanning will be necessary. 
If the blocks in the problem are taken as the pieces of a chessboard and if the work space is taken as 
the chessboard, it can easily be seen that there can be several blocks of a block type. For example, the 
initial state can be as in Figure 4 where there are two labelled A, two labelled K, etc. blocks (chess 
pieces). It’s accepted that there can be 6 different types of blocks as in a chess game for this case 
study. The number of blocks on the board is related to the size of the board as in a chess game. A 
board with n × n dimensions has n × n / 2 number of blocks at most (n > 0).  The number of the types 
of blocks (A, V, S, K, P, F) and the number of the blocks (pieces) on the board (2 A type blocks,  6 P 
type blocks ) are generated randomly by the planner. Board size is user input. 
For example, the block labeled V at coordinates (4,2) can either be placed at (2,1) or (5,1) for its 
destination (Figure 5). Similarly, the block labeled V at coordinates (6, 7) can either be placed at (2,1) 
or (5,1) for its destination. Which V will be placed at which coordinates depends on minimizing the 
total distance the robot arm travels. In the proposed solution, robot arm is taken to its initial position. 
The planning details are given in [5, 6]. 
While executing the plan for the mixed pieces problem, unexpected events are allowed to occur. The 
distance metric which represents the amount of mix up on the board is calculated after the unexpected 
event occurs. The distance metric value is the number of blocks whose positions have changed after 
the unexpected event. If there’s a previously stored plan from the unexpected state to the goal state 
then that plan is put into execution. Otherwise, the distance metric is compared by the threshold value 
to decide on which alternative to pursue. 

 
  



 White Group Black Group 
 Block Type  Number of block   Block type  Number of block 
  V 4  V  4 
  S 4  S  4 
  A 8  A  8 
  K 16  K  16 
  F 16  F  16 
  P 16 P 16

   

           Figure 4 An Initial State for Mixed Pieces Problem          Figure 5 A Goal State for Mixed Pieces Problem 

 

3.1 Threshold Value Adjust for the Case Study 
A board with dimensions 16 × 16 is used for the case study. There are 128 blocks on the board. There 
are two colors of blocks and each color has 64 blocks. All the block types are on the board and the 
number of blocks for each type is given in Figure 6. Two blocks with same labels but different colors 
can be considered as two different block types. Nevertheless, a black V in initial state will never be 
placed in a destination place for a white V.  
The cost table has dimensions 80 Χ 5. The distance metric for this problem is the number of pieces 
that are not in their expected places after the unexpected event. This number includes the number of 
blocks that were placed in their destinations but now removed by an external agent as the result of an 
unexpected happening. The values for the distance metric can be  0 < dm < 80. 

 
 
 
 
 
 

 

Figure 6 The Table That Shows the Number of Pieces for Each Group 

The costs for 5 different unexpected events will be recorded in each column of the cost table. There 
should have occured 400 unexpected events to fill the cost table completely. The abnormal increase or 
decrease is assumed to be above “1” or below “-1” between the threshold column and the previous 
column. Threshold value is assigned as “5” at the beginning. An abnormal decrease will shift the 
threshold value by 10 (step-size) to the left whereas an abnormal increase will shift the threshold value 
by 10 to the right. Figure 7 presents the changes from the previous column to the threshold column. If 
an increase is detected, the threshold value is increased to 15, 25, 35 and 45 in order. When the 
threshold value is 45, the difference between previous column and the threshold column is -3.08 so the 
threshold value is decreased by 10 to obtain 35 which is the stabilized threshold value. This is the 
threshold value where the difference is a decrease (-3.08) after several increases (+3.16, +7.68 etc.) so 
it’s taken as the stabilization value. 
 
 

 



 

 

 

 

 

Figure 7 The Difference between the Threshold and the Previous Column 

Figure 8, 9, 10, 11, 12 and 13 are the tables for distance metric value costs. The tables show the plots 
for averages of columns in a cost table where averages below threshold present the values for 
alternative 1 and averages above threshold value present the values for alternative 2. That is, 
alternative 1 is chosen for low distance metric values and alternative 2 is chosen for high distance 
metric values. The stabilization for threshold value at dm=35 is reasonable when the areas of graphs in 
Figure 12 and Figure 13 are compared. In Figure 13, the graph of the column averages of costs where  
alternative 2 is used for all distance metric values is given. In Figure 12, the left side of threshold 
value is the graph plotted using alternative 1 costs and the right side is the graph plotted using 
alternative 2 costs. The area under the graph of Figure 12 is 1281 where as the area under the graph of 
Figure 13 is 1336 (the difference is 55). On the other hand, the area under graph in Figure 11 is 1522. 
However, if alternative 2 values were used for all distance metrics for the case in Figure 11, the area 
would be 1602 (graph is not plotted). The difference between the two areas would be 80. As a result, 
the case study supports the idea that alternative based mechanism is a method to decrease costs in 
total. On the other hand, obtaining a difference of “80” at stabilized threshold value (35) whereas 
obtaining a lower difference of “55” at an unstabilized threshold value supports the idea that threshold 
can be improved to give better decisions in time. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 9  Thr = 15, cost table averages. 
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  Figure 8  Thr = 5, cost table averages. 
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Figure 11  Thr = 35, cost table averages. 

4

0
10
20
30
40
50

1 10 19 28 37 46 55 64 73

distance m etric

co
st

s

  Figure 10  Thr = 25, cost table averages. 
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Threshold Value          Difference 
5 +3.16 
15 +7.68 
25 +7.38 
35 +5.37 
45 - 3.08



 

 

 
 
 
 
 
 
 
 

 
4  Conclusion 

In this paper, a replanning framework at the highest level of symbolic representation and which has 
learning based capabilities is described and a case study is presented. If there is more than one 
alternative as an action path in case of an unexpected happening, the one with the least cost is 
considered. The possible alternatives can be to backtrack to a state with the effects of unexpected 
happenings cleared or to make a new plan from the unexpected state to the goal state. Additionally, the 
mechanism is enriched by indexing optimal plans for an initial and goal state pair if there is one in a 
plan base and to retrieve them in case the planning needs to be done for the same initial and goal state 
pair. Vision support is used for detection of unexpected events in the environment and events that 
cannot be detected by low level sensors. It also helps to generate a current model of the environment 
to generate a plan and the test results support the idea of reduced costs with considering alternative 
action paths. 
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 Figure 12  Thr = 45, cost table averages.
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Figure 13  Cost table averages obtained using 
alternative 2 for every distance metric in Figure 12. 
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