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Abstract 
In this paper, we point out the long lasting debate between two main approaches of 
Artificial Intelligence: Symbolic AI and connectionist AI. The reasoning of the 
connectionist AI defenders depend on the indication of necessity of neuron modelling for 
knowledge representation and hence ignoring symbolic AI which fails in doing that. On 
the other hand, symbolic AI presents better models of representing knowledge, and 
higher reasoning capabilities. So we will investigate the issue of whether connectionists 
might be justified in their arguments since symbolic AI has no intent to consider neuronal 
level knowledge representation and manipulations and fails most of the time when agents 
it considers are embodied in a real world environment where as connectionist approaches 
mainly consider embodiment where there are yet no serious signs of how high level 
reasoning might have emerged from low level functioning of interconnected neurons.  
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brain, cogitive science. 
 
1 Introduction 
 
There’s a long term debate that is still going on between symbolists and connectionists in 
artificial intelligence about representation and manipulation of knowledge in brain as far 
as the high level cognitive processes such as memory, thinking, problem solving, 
information retrieval etc. are concerned.  
 
The symbolic approach assumes the presence of data structures in brain in analogy to the 
data structures used to store and manipulate knowledge in computer memory. Again 
algorithms in analogy to the computational algorithms are assumed to manipulate the 
knowledge in brain or to solve problems.  
 
On the other hand, connectionist approaches reject symbolic approaches since symbolic 
approaches do not consider the neuronal level of knowledge representation in the brain. 
Furthermore they claim that with the use of neuronal level knowledge representations, the 
brain can no longer be considered to use algorithms to solve the problems as computers 
do. Their claim emerges from the point that neuronal level problem solving is totally 
different from algorithmic problem solutions and the brain functions with its neurons 
after all. Hence, connectionist theories model thinking using artificial neural networks. 
 
The aim of this paper is to investigate the point whether connectionists can really be 
justified in their argument and whether brain research still has benefits to take from 
symbolic approaches. 
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2 Interesting Questions on Information Storage and Ordering of Actions 
1956, George Miller summarized numerous studies which showed that the capacity of 
human thinking is limited, with short-term memory, for example, limited to around seven 
items. He proposed that memory limitations can be overcome by recoding information 
into chunks, mental representations that require mental procedures for encoding and 
decoding the information [1]. Cognitive theorists have proposed that the mind contains 
such mental representations as logical propositions, rules, concepts, images, and 
analogies, and that it uses mental procedures such as deduction, search, matching, 
rotating, and retrieval. The dominant mind-computer analogy in cognitive science has 
taken on a novel twist from the use of another analog, the brain. Connectionists have 
proposed novel ideas about representation and computation that use neurons and their 
connections as inspirations for data structures, and neuron firing and spreading activation 
as inspirations for algorithms [1]. 
 
Critics of cognitive science have offered such challenges as:  

1. The emotion challenge: Cognitive science neglects the important role of emotions 
in human thinking.  

2. The consciousness challenge: Cognitive science ignores the importance of 
consciousness in human thinking.  

3. The world challenge: Cognitive science disregards the significant role of physical 
environments in human thinking.  

4. The social challenge: Human thought is inherently social in ways that cognitive 
science ignores.  

5. The dynamical systems challenge: The mind is a dynamical system, not a 
computational system.  

6. The mathematics challenge: Mathematical results show that human thinking 
cannot be computational in the standard sense, so the brain must operate 
differently, perhaps as a quantum computer.  

However, now we will discuss why these challenges against cognitive science or 
symbolic approaches might not be enough to abondon symbolic approaches. 
 
So we start with a set of interesting questions to answer about the functioning or the high 
level capabilites of human mind: 
 

• What are components of intelligence? 
• Is hybrid intelligence (integration of symbolic and connectionist approaches to 

benefit from the advantageous sides of each) necessary/possible?  
• How are symbols kept in memory physically? 
• How are words (combined symbols) kept in memory? 
• What’s the relation between symbols, and the neural nets of the brain? Are they 

just inputs/outputs or do they appear in middle layers?  
• What are the elements of mind? 
• Is language learning able to say much more than other fields could do? 
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Roughly speaking a human is in interaction with its environment using its vision, sense, 
smell, taste sensors and he can observe both other objects and affects of its actions in the 
environment as well as he can observe himself (self awereness). He has high level 
reasoning capabilities which he uses language to communicate them to the others in his 
or distant environments.  
 
On the other hand, following are the observations we have about how the mind might 
work: 
 

• Symbols are kept in memory.  
• They are manipulated in memory. 
• Brain can make/think plans.  
• Plans are a serious of action descriptions.  

An example plan:  
– Walk to the room. 
– Go in through the doorway. 
– Close the door. 
– Walk to the computer. 
– Start talking. 

• Plans are kept in memory also. 
 

The rest of the observations are as follows: 
The steps in the above example plan have an ordering and the brain produced that 
ordering to solve the task of ”giving a talk while standing next to the computer”.  When 
one actually wants to execute the steps in a plan, he can retrieve them and then execute 
them and this is the reason we think plans are kept in memory. The content of each step 
in a plan is a description of a behavior and is modeling that behavior however, the step 
itself resides in the brain and not just in the interface one has with other people, in the 
words one utters and on a paper that he puts them. 
 
What about the times when there was no language and human beings caught animals, fed 
themselves with caught animals’ meat and with plants, drank water from rivers, caught 
fish in the sea and felt pain when poisoned? Did they keep symbols and description of 
their actions in the brain then? 
 They should have. When one got hungry, he probably had the picture of a fish 
flashing in his mind suddenly.   
 If one was poisoned from water yesterday, he would flash appearance of his hand 
and arm movements in pain in his mind. 
 
So if human beings were not able to form a verbal or a sign language to communicate 
with each other, would the brain ever evolve to hold symbols, plans etc.? We think the 
answer is “yes”. But the representation in the brain would probably be different. 
 
How does the brain generate an ordering of the steps in a plan? Why doesn’t ”go in” step 
come before the ”walk to the door” step in the above plan to solve the given task?  
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 Should there be an algorithm in analogy to a computational algorithm in the brain that 
does the ordering? If there is, the algorithm certainly is embedded in the functioning of 
the physical network of neurons in the brain. Sometimes any two neuron connection in a 
brain neural net is intense and sometimes it is lose, depending on the task in the hand. 
The outputs of the algorithm (algorithm = the topology of the neurons in the brain and the 
strength of any two connected neurons) for given inputs are also kept in the brain in the 
area called memory and what is being kept are the names of people, names of objects, 
relation of an object to another one, one’s impressions about people and objects, the plans 
one generates, etc. which are defined to be memory contents. 
 
How does the memory store its contents? What kind of topology is the memory 
composed of to store a single symbol for example? Is there a single topology part of a 
bigger topology to represent a single symbol? When one talks about a red book for 
example, is there a topology for storing ”red” and a topology for storing ”book”  
separately? If so, what is the mechanism to relate these two topologies with each other or 
how do these separate topologies work with each other? Or is there a single topology to 
store everything? If not, what kind of topology lets one attribute color red to the book he 
is reading and at the same time color red to the sweater he is wearing and how does one  
store those concepts? 
 
What kind of topology does the memory have for storing/keeping plans and language 
rules? The forehead of the brain is found out to be the part of the brain to do planning. Is 
it a single neural net topology in the forehead to do planning or is it a combination of 
them? 
 
Could that algorithm to do planning be an implementation of a decision tree search (topic 
of symbolic approach) by the neural net(s) in the brain in its (their) own way and hence 
the outcome actions have an ordering as in a plan? 
 
Does the algorithm itself have an orderly way of learning rules (i.e. language rules), 
learning algorithms and for planning? Does it make searches to solve a problem, does it 
use induction/deduction or does it decompose a problem and handle each decomposed 
part immediately or in time to solve the problem in an orderly manner?  
 
Or does order come out of disorder? That is, do the brain processes (problem solving, 
planning, thinking, memory etc.) which we feel concretely to happen in our brains 
emerge as an order out of neurons interacting locally using simple rules ? [2] 
 
After all these questions comes one of the main questions: How does the neuronal 
mapping from high level reasoning to low level neuronal activity occur? How do neurons 
map to/implement the algorithm(s) that do abstract planning, reasoning, thinking and 
form abstract memory? Do those seem to present abstract algorithms (higher 
level/complex order) emerge from random local interactions leading to global order such 
as in the world of ants or not? One can intuitively say yes or no also looking at what 
happens in other living systems, but does this answer the question? 
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3 Possible Clues 
It’s important to get clues from the ongoing and previously done research in response to 
the question of which approach in AI is more likely to understand the functioning of 
human brain and whether an integrated system is possible/necessary to overcome the 
drawbacks of each approach.  
 
One of the most investigated approaches is the integration of planning and reactivity for 
producing artificially intelligent agents [3]. There are different studies with this approach 
where a high level planner and a low level executer appear in different combinations 
together. In these schemes, elementary behaviors are implemented by a reactive 
controller [3] where as more complex behaviors can be produced by sets of low level 
control structures. The more complex behaviors are generated by a planner first and then 
they are compiled into simple behaviors (low level control structures). However, these 
integration studies are mainly for producing “artificially” intelligent agents. Their aim 
doesn’t go beyond obtaining machines that can act intelligently although these machines 
are expected to mimic the functioning of brain and show brain like reasoning. However, 
in brain, low level is not only executing what is received from high level but it 
generates/causes high level itself.  

 
So, in brain, planning algorithm itself (if it exits) is generated by what it is executed.  

 
On the other hand in [4] Damasio proposes that human reasoning depends on several 
brain systems, working in concert across many levels of neuronal organization, rather on 
a single brain center. Both ”high level” and ”low-level” brain regions, from the prefrontal 
cortices to the hypothalamus and brain stem, cooperate in the making of  reason. He also 
suggests that the lower levels in the neural edifice of reason are the same ones that 
regulate the processing of emotions and feelings, along with the body functions necessary 
for an organism’s survival. In turn, these lower levels maintain direct and mutual 
relationships with virtually every bodily organ, thus placing body directly within the 
chain of operations that generate the highest reaches of reasoning, decision making, and, 
by extension, social behavior and creativity. Emotion, feeling, and biological regulation 
all play a role in human reason. The lowly orders of our organism are in the loop of high 
reason. 
 
What [4] states gives a clear indication of there might be brain regions in brain busy with 
high level and low level functioning each of which might correspond to symbolic and 
connectionist approaches respectively.   

 
Although some scientists believe that neuronal connections are in the form of every 
neuron having a connection with every other neuron, and that mind and behavior 
probably emerge from that messy connectivity in ways that no science will never reveal, 
[4] considers this thought to be wrong with the following statement: 

 
 “On the average, every neuron forms about 1000 synapses, although some can 
have as many as 5000 or 6000. This may seem a high number, but when we consider 
that there are more than 10 billion neurons and more than 10 trillion synapses, we 
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realize that each neuron is nothing if not modestly connected. Pick a few neurons in 
the cortex or in nuclei, randomly or according to your anatomical preferences, and 
you will find that each neuron talks to a few others but never to most or all of the 
others.” 
 
Could this statement be a signal of brain processes having an order in execution in a 
sense of the order a computational algorithm has in execution – one step executes 
after the other? (Parallel computational algorithms also have an ordering in the sense 
that a group of steps executed in parallel are followed by a single or another group of 
steps to be executed in sequence or in parallel). Also [4] mentions about stages of 
reasoning which might easily correspond to step(s) of an algorithm. 
 
In [5] Sobel defines the way the two disciplines (Symbolic vs. Connectionist AI) view 
knowledge or information with: “AI attempts to capture intelligent behavior without 
regard to the underlying mechanisms producing the behavior. This approach involves 
describing behaviors, usually with rules and symbols. In contrast, neural networks do 
not describe behaviors; they imitate them.”  
 
In [6] attention is drawn to the point that limitations of present-day machine 
intelligence stem largely from seeking "unified theories," or trying to repair the 
deficiencies of theoretically neat, but conceptually impoverished ideological 
positions. It is then mentioned that purely numerical connectionist networks are 
inherently deficient in abilities to reason well whereas purely symbolic logical 
systems are inherently deficient in abilities to represent the all-important "heuristic 
connections" between things - the uncertain, approximate, and analogical linkages 
that are needed for making new hypotheses.  
 
Minsky also argues that yet symbolic AI has told us a little about how to solve 
problems by using methods that resemble reasoning in [6]. He goes on with saying: 
“If we understood more about this, perhaps we could more easily work down 
toward finding out how brain cells do such things.” He points out that 
connectionist approaches have told us a little about the workings of brain cells and 
their connections. He states: “More research on this might help us discover how 
the activities of brain-cell networks support our higher level processes.” He 
suggests the solution to be in doing more research on how to combine both types of 
ideas.  
 
As a good example of extending connectionist approaches to have better high level 
reasoning capabilities, in [7], Meeden et. al. did experiments on robots which can 
exploit intelligent plan like behavior with a connectionist approach. In their 
experiments, there’s a light source in a corner of a workspace as shown in Figure 1 
and a robot in the workspace is given the task of approaching or moving away from a 
light source, one task following another task. Although the robot is not programmed 
in an explicit way as in a planning algorithm and uses an artificial neural net trained 
for the seek and avoid tasks, the observed behaviors of the robot to accomplish each 
of the task represent a behavior hierarchy which can be summarized as in Figure 2. 
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The behaviors in Figure 2 are not explicitly programmed but they emerge from the 
functioning of the neural net trained for seek/avoid behaviors. Although this work is a 
step towards increasing the representational and planning capabilities of artificial 
neural networks, it is still a very little portion of what humans can achieve with their 
high level reasoning capabilities.  
 

 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
Finally, if one is given the task of summing 232 and 215 as in Figure 3 using the given 
simpler rules of summation on the left then does one use an algorithm as in analogy to a 
computational summation algorithm that uses the simpler rules of summation to do a 
more complex summation? Are these three rules used in an orderly manner as we would 
do in a computational algorithm? If complex global behavior can “emerge” naturally 
from collections of agents (here neurons) subject only to simple local interactions without 
the need for a high-level global controller, that is without the presence of a high level 
explicit summation algorithm in this example, then how are simpler rules of summation 
incorporated in the computation of the more complex summation operation? 

Figure 1. Path of a simulated robot through the playpen (units arc inches). The light is 
located at the origin. The direction of the arrows indicate robot’s current heading. The 
numbers on the path refer to steps in a sequence of motion. 1-8 occurred during avoid-
mode, 9-18 occurred during seek-mode.  Note that it has satisfied its goals at steps 8 and 
16. 

                     light as food 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A hierarchical view of robot’s behavior. 
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The final and for centuries asked question is: How does brain work?  
 
4 Possible Ways of Answering Questions 
 
Pick up a sub part(s) of the main problem to gain a better insight of how the solution 
should be shaped for the main problem. A possible sub part of the problem is memory 
and possibly answering questions of: How could memory be keeping and remembering 
stimuli(s) that have occurred in the past but need(s) to be remembered in future, possibly 
near future? How could such a memory be achieved? 
 
Delayed response tasks are a standard way of investigating short-term memory (STM). 
The agent is typically assumed to ’remember’ in some way the necessary information 
about the stimulus (for example the side on which a stimulus appeared) during the delay 
period. Related experiments are carried on rats or with robots programmed to simulate 
the behaviors of rats in T-mazes as in Figure 4 where rat placed in a T-maze (or a robot) 
starts its motion from the bottom of a T-maze and it meets a light source on the left or on 
the right before it reaches the junction. When it reaches the junction, it takes a right or a 
left turn remembering which side of the corridor before the junction it saw a light source. 
The studies up to now are still far away from suggesting a specific model of how animals 
solve delayed response tasks [8].  
 
 
 
 
 
 
 
 

Figure 4. The two situations in the simple T-maze environment, adapted from [9]. 
 
From an observer’s point of view it is relatively easy to attribute some kind of 
“representation” to an animal or a robot exhibiting the correct behavior as in [7], but the 
detailed analysis of studies can help to illuminate the actual mechanisms underlying that 
behavior [8]. 
 
Most of the studies used standard recurrent artificial neural nets in which certain neuron 
activation values are fed back and used as extra inputs to some of the neurons in a later 
time step (typically the next one). In this type of network, the synaptic connection 
weights are usually considered long-term memory since they are changed only by the 
training process, whereas the feedback activation values, which can change from moment 

  232 
  215 
+-------- 
  447 
 

2 + 2 = 4
3 + 1 = 4
5 + 2 = 7

Figure 3. How is summation above done in the brain – by an algorithm as in analogy to a computational 
algorithm or by a network of neurons emerged to do the task?  
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to moment, is commonly considered to constitute short-term memory. [10] points out in 
review of computational models of working memory that memory-related activity has 
been observed in several brain areas, in particular the prefrontal cortex (PFC) which is 
“the brain structure most closely linked to working memory”. STM has been found in 
both single-neuron recordings in nonhuman primates and in human brain imaging studies 
[11, 12]. On the other hand, the role of neuromodulators such as dopamine is not 
understood yet. However, it has been observed that dopaminergic activity, which can 
affect synaptic currents increases during working memory tasks [13]. 
 
We have ongoing research in our department on short term memory and an extension to 
it: “counting”. If an agent in a corridor shown as in Figure 5 can be trained to make a 
turning to the correct corridor when given the corridor number then it can said to be able 
to count. As an example, when corridor number 3 is given, the agent should start its 
journey from a random position in the beginning of the main corridor and take a right 
turning to the third corridor. The entrance of each corridor is indicated by a zone sensor. 
The first results on this study and the artificial neural nets used for the implementation 
are given in [14]. 

 
Figure 5. The robot can take the indicated path to make a turning to the 3rd corridor. Right after this task, 
the robot can be asked to make a turning to any other corridor.  
 
Also, single neuron recordings and brain imaging techniques, focus on the measurement 
of neuronal activity, whereas synaptic changes are more difficult to monitor. The role of 
studying plasticity in STM might contribute to neuro-scientific and/or cognitive scientific 
theories and models of the corresponding biological mechanisms. In addition to the short 
term memory studies [15], studies on internal simulation of perception where controls are 
presented an environment and are asked to walk around the environment by remembering 
what they have seen to avoid obstacles are other approaches for studying memory and 
hence getting a step ahead on how the mind works [16].    
 
5 Conclusion 
 
In contrary to the debate put forward by connectionists against the necessity of symbolic 
methods in brain research, we present the points in this paper why this argument might 
not be valid. Since none of the approaches has a valid model that explains functioning of 
brain yet, it’s also not possible to prefer an approach over the other although 



 10

connectionist approaches put effort in modeling brain functions in a way the brain itself 
does: with neurons. However, there is not yet any evidence that any of these models 
actually represent brain functions. Although brain is thought to emerge its functioning, 
there is again no evidence that brain does not function in a manner a computational 
algorithm does.   
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