

The Implementation of a Robotic Replanning
Framework

Şule Yıldırım and Turhan Tunalı
Ege Univ. International Computer Institute, 35100, Bornova İzmir

{yildirim,tunali}@ube.ege.edu.tr

Abstract. In this study, the implementation of a previously proposed robotic
replanning framework is presented. The proposed framework integrates a high
level replanning paradigm into a three layer robotic architecture. There has been
a great deal of studies on managing unexpected events at lower two levels of
three layer architectures but doing replanning at highest level still needs
investigation. Supporting replanning with real-time vision feedback from
working environment and integrating a learning mechanism as a basis
increases the success ratio.

1 Introduction

The modern robotic control architectures have shown an evolution from SPA (Sense
Plan Act) to Subsumption to Three Tier architectures. In Subsumption high level
layers interface with lower level ones by suppressing the results of the lower-level
computations and superseding their results [1]. In three tier architectures, higher-level
layers interface with lower level ones by providing input or advice to the lower-level
layers or to answer the queries of the lower layers [2]. Recent robotic control
architectures compose of three layers: deliberation, sequencing and reactive feedback
control [2]. Researchers use one or more of these layers in their architectures
depending on the way they look at how robotic tasks should be handled. If the robotic
environment necessitates planning, that is, when a timely order of actions is needed
before execution, a deliberation dependent architecture is used. However, if the real
world is changing frequently as well as there’s uncertainty in the world, the reactivity
part of the architecture is stressed. The researchers in the latter group argue the
usefulness of planning in dynamic environments in which it will be impossible to
execute a whole plan to the end without any changes in the environment. They
conclude that generating a plan that will become obsolete is unnecessary.

In our study, intend is to generalize the architecture in a way that it can be used to
handle many different tasks in the real world. This brings with it the result that there
will be tasks that need more deliberation than reactivity and tasks that will need more
reactivity than deliberation. For that reason, including only one layer will prevent
generality and hence a three layer approach helps to obtain generality in this study.
The second thing is that when there’s not much need for reactivity and when a

ADVIS 2002

planning execution error occurs because of an unexpected happening in the
environment, the error handling can be more efficient at the deliberation layer where
planning is also done. As a result, if there’s planning in a system, handling execution
errors at planning level in addition to the handling of sequencing and reactive levels
can increase time and energy efficiency.

The paper is organized as follows: In Section 2, after giving a brief survey of
literature, we present our replanning approach at the deliberation level. In Section 3,
our domain dependent planning framework is given. Section 4 explains the vision
support of the whole system. Finally, in Section 5, concluding remarks are made.

2 Replanning at the Deliberation Level

Some previous work does replanning at the highest level [3, 4]. However, these
studies make some modifications in a current plan to make the plan useful for the
situation after the effects of unexpected happenings appear on the workspace of the
robot. The way to handle an obsolete plan in case of unexpected happenings is
dependent on the nature of the tasks that the plans are generated for. For example, in
case that a mobile robot misses a corridor on its way, the only way to travel along the
corridor is to realize that it missed it and go back to the entrance of the corridor and
direct its way through the corridor [5]. Although, there doesn’t seem to be any other
alternative for the robot to correct its action in the above case, there are problems that
provide the opportunity of selecting alternative action paths to achieve a given goal in
case of unexpected happenings. In this study, we extend our problem space to this
class of problems and investigate two of them for replanning at deliberation layer.

 The first one is the “mixed pieces problem”. A detailed definition of mixed pieces
problem can be found in [6]. A brief description is as follows:

Given are an initial and a goal state for a robot workspace. The objects in the
workspace are blocks with sizes that a robot arm can grip. The blocks are positioned
in cells of a chessboard like grid structure. They are labeled with letters on the top to
differentiate them from each other. The problem is to find a sequence of actions with
minimal cost that will place the blocks from their initial state positions to their goal
state positions. In our solution, the cost of a sequence of actions is estimated by using
a learning mechanism that makes use of traveled distance and planning time of
previous executions [6]. The key point in this problem is that more than one block can
have the same label letter and that a block can be placed in any one of the goal
positions that its label letter fits. The other important points are:

1) The destination position of a block can be occupied.
2) An unexpected happening can occur during the transfer of the blocks from

their initial state to their goal state such as the mixing of blocks and hence
replanning might be necessary.

The other one is the ”container positioning problem” given in Fig. 1. In this
problem, a bunch of containers are to be placed from a ship to a specific place at a
port. Also a container can be removed from its place in the port back to the ship.
These operations are achieved under some previously defined constraints. The
constraints can be the size of the blocks, the maximum number of blocks that can be

placed on top of each other, the rule that a large size container cannot be placed on
top of a small size container but on two small size containers, etc. The optimality of
distance traveled by the robot arm is also considered in this problem. In addition, the
system might need to replan in case that some constraints are avoided or a container is
placed in a wrong position depending on the timely accumulating mechanical errors
in the arm.

Fig. 1. An example container domain.

When these two problems are examined carefully, it will be seen that the order of
the actions in a sequence to achieve a task is important for obtaining time and energy
optimality. In both of these problems, an initial and a goal state is defined and a plan
sequence is generated such that the robot arm travels an optimal distance when a task
is accomplished and spends the minimal planning effort before the plan is put into
execution. Optimality is also considered in the case of unexpected events changing
the workspace of a robot. Thus, the idea of taking prospective actions that minimize
both the overall distance to be traveled and the planning time is also present in
replanning. The new sequence of actions generated as a result of replanning is either
completely or partially different from the original plan.

The pick and place sequencing problems that are explored to implement the
proposed replanning framework are optimality problems. However, current software
is not only designed to solve optimality problems but also other types of problems
that can be solved within this scope if necessary domain definitions and rules are
given to the system.

Some planning domains in literature replan by either assigning alternative values to
the variable(s) of a selected operator for a situation if currently assigned values don’t
produce the expected effects or by selecting an alternative operator for a situation if
the selected one doesn’t achieve the intended action [7, 8]. That is, replanning is
finding the right “value(s), operator” combination that produces the expected effects
when executed in a certain situation. On the other hand, some planners send the robot
command sequences for multiple actions or even complete plans assuming that action
failures, beneficial side effects and exogenous events will be rare without making a
monitor at the end of execution of each action. Some planners use internal recovery
procedures that handle common, known failures with simple and directly applicable
behaviour.

The first of the above approaches corresponds to generating a new sequence of
actions from the state affected by the unexpected happening to the goal state. In this
study, this approach is only one of the options for handling unexpected events. The
other option is to clear the effects of an unexpected event and continue with the rest of

depth

width

In the left port, container “F”
shouldn’t be inserted on top of
container “C”. Six small size
containers or three small size
containers can be placed next
to each other. height

A B
D E F

 C

the original plan. The final but an important option is to go to a previously stored
intermediate state that is known to be on the path of an optimal plan. The optimal plan
is generated previously for a similar situation. The idea behind considering alternative
approaches in a replanning situation is to integrate optimality consideration in
replanning if optimality itself is not too costly to obtain. Although generating optimal
or suboptimal plans during planning is intended, this is not always possible due to the
nature of some problems, i.e. NP-complete problems. Hence, integrating optimality
consideration into replanning helps in overall efficiency of a robotic system. The
algorithms for planning and replanning approaches will be given in the following
paragraphs. It should be noted that there’s a scheduler for scheduling subtasks in a
robotic system. Neural Network training, receiving of initial and goal states, planning
and execution of plans are the subtasks defined.

Following is the algorithm for the task scheduler.
main(){
NN_training (); //Neural Network is trained for
//segmenting and recognizing objects in workspace later.
user_input () ; //User inputs initial and goal states
//for real world execution or random matrices are
//generated for initial, goal states for simulation.
Expected_World_Model = Initial_State;
plan = planner(Initial_State, Goal_State);
execute(plan);
}

The execute function whose algorithm given below executes each step in a plan by
sending the plan step to the robot controller. When the execution of a plan step is
completed, Expected_World_Model is updated with the belief of execute function.
Later, an image of the world is grabbed, processed and compared with the belief to
figure out if the system is in synchronization with the real world. If there’s a
difference between the Expected_World_Model and the real world then replanning is
done.
execute(plan){//plan is the name of the file

 //containing a plan.
for each plan step {
plan_step = get_a_plan_step_from_plan();
RobotController(plan_step);//executive layer
Update Expected_World_Model;
Grab an image of the world;
Process grabbed image to form Observed_World_Model;
dm=compare(Expected_World_Model,Observed_World_Model);
if (dm > 0) do replanning; }}

The replanner has three alternatives to choose from. An intermediate state which is
known to be on the optimal or suboptimal path has always the priority over the other
two alternatives. In the following algorithm, if the function get_intermediate_state()
returns true, that is , there’s a previously obtained intermediate state for a similar
situation, then the plan stored in the plan base is retrieved and is put into execution.
Otherwise, the other two alternatives are considered for replanning. If the value of
variable “dm” which corresponds to a distance metric to measure the difference

between two states and whose value was obtained in the latest call of the function
“execute()” is less than a previously settled threshold value “thr”, then the alternative
of backtracking to the state before the unexpected event and executing rest of the
original plan is chosen. In this case, new_plan corresponds to a sequence of actions
that brings the state after the unexpected happening to the state right before the effects
of the unexpected happening. Meanwhile, alter1_cost() function calculates the cost of
using alternative 1 for replanning by taking into account planning time for
backtracking and total distance traveled to reach the goal state. There’s a learning
mechanism behind choosing a proper alternative. The system learns the value of the
threshold whose value was assigned randomly at startup as it progresses. The details
of the learning mechanism are in [6]. On the other hand, if the value of dm is not less
than the threshold value, the alternative of generating a completely new plan from the
state with the effects of the unexpected happening to the goal state is selected. Cost
calculation (alter2_cost()) is done and used accordingly. Plans are put into execution
when they are generated.
replanner() {
(bool) yes = get_intermediate_state();
if(yes){

new_plan = retrieve_plan_for_intermediate_state();
execute(new_plan);}

else if(dm != 0 && dm < thr) {
 alter1_cost();

new_plan=planner(Observed_World_Model,
Expected_World_Model);
execute(new_plan);
execute(plan); }//rest of plan will be executed.

else { alter2_cost();
 new_plan = planner(Observed_World_Model,

Goal_State);
execute(new_plan); }}

3 Domain Dependent Planning

In order to achieve a general planner, planning for different domains should be
allowed. In this study, general planning is achieved by using a means-ends analysis
planning mechanism [9] that is represented by predicate calculus and allows
representation of different planning domains, domain operators and rules. Means-ends
analysis is a paradigm that applies domain specific search control rules on a search
tree during planning and hence chooses a sequence of operators. Operators are nodes
of a search tree. The functionality of control rules can be extended to incorporate
finding an optimal sequence of actions if there’s one.

In Vision Guided Planner, VGP, there are two blocks world domains. The first one
is the mixed pieces domain where the other is the container load/unload domain in a
port. Each domain has its own search control rules and the planner activates the
domain specific control rules when planning for a domain. The objects in a domain

are represented by a structure called object and it has attributes such as its type, name,
size, present x and y coordinates, goal x and y coordinates, etc.

The planning algorithm for mixed pieces domain solves the mixed pieces problem
and is later expressed in the form of predicate calculus. The algorithm is as follows:
Mixed_Pieces(){
Object obj;
Read_State(Initial); Read_Satete(Goal);
int unprocessed=find_number_of_unprocessed_blocks();
strcpy(obj.type,”ARM”);
While(unprocessed > 0) {
if(obj.type == “BLOCK”){

find_closest_destination_from_block(obj);
if(empty_destination(obj)){

move_block(obj);
strcpy(obj.type, “ARM”);}

 else {
find_closest_empty_cell_from_destination(obj);
//Above function incorporates the movement of
//the block in destination cell of object obj
//to the empty cell.
move_block(obj);//move block from initial to
//goal position.

 strcpy(obj.type, “ARM”);}
 else if(obj.type == “ARM”) {

 find_closest_destination_from_arm(obj);
move_arm(obj); //move to the coordinates of
//block to be moved.
strcpy(obj.type, “BLOCK”);} //assign next
//moving object as “BLOCK”.

unprocessed = unprocessed – 1;
}
The planning algorithm for container insertion and removal are same as their

corresponding control rules. Two functions in the algorithms will be presented
below:
int find_closest_empty_destination_from_arm(object *obj,
int *x, int *y, int *z){
int i,j,k;
for(i = 1; i <= depth; i++) // three-dimensional
for(j = 1; j <= height; j++) //domain
 for(k = 1; k <= width; k++){
 if(obj->size == 0 && port[i][j][k].name==' '

&& port[i][j-1][k].name != ' ')//checks that
//underneath is full. Small is 0, large is 1.
{*x=i;*y=j;*z=k; return 0;}

if(obj->size == 1 && (k+1)<=width &&
port[i][j][k].name==' ' &&
port[i][j][k+1].name==' ' &&
port[i][j-1][k].name != ' ' &&

 port[i][j-1][k+1].name != ' ')
 {*x=i;*y=j;*z=k; return 0;}}

return 1;}
Assume that a port consists of a three-dimensional grid structure as in Fig. 1 and

each three-dimensional grid is called a cell. A small container occupies one cell where
as a large container occupies two cells. The first if in the above function checks if a
cell (i, j, k) at port is empty, if container size is small (size 0), and if cell (i, j-1, k),
that is, the cell below (i, j, k) is full or floor. If it is full or floor, the function returns (i,
j, k) for insertion and if not, continues to search for another empty cell.

In the second if, a large container is being inserted. A large container occupies two
cells next to each other, i.e. (i, j, k) and (i, j+1,k). Second if checks whether container
size is large, whether (i, j, k) and (i, j, k+1) are empty, whether k+1 is within grid
structure and whether (i, j-1, k) and (i, j-1, k+1) are full or floor. If they are, the
function returns (i, j, k) for insertion and if not, continues to search for another empty
cell.
void make_container_approachable(object obj){
int x,y,z,j,toplevel = 0;
toplevel = get_topmost_object(obj);
for(j=toplevel; j > 0; j--)
get_temp_destination(obj, &x, &y, &z); // return
//temporary destination coordinates in x,y,z.
move_to_temp_destination(obj,x,y,z,toplevel);
port[obj.curlocz][j][obj.curlocx].name=' '; //make
//topmost cell empty.

}}
In the above function, get_topmost_object(obj) function gets the y axis coordinate

of the topmost container on container to be removed. get_temp_destination(obj, &x,
&y, &z) function returns the coordinates of a temporary cell for the topmost
container. move_to_temp_destination(obj, x, y, z, toplevel) function moves the
topmost container to the temporary cell with (x, y, z) coordinates. Since, the topmost
container is moved now, its place is assigned empty with the next statement.

The control rules in predicate calculus and the planner algorithm are given in the
following figures.

Fig. 2. Control Rule for Mixed Pieces Domain.

if (!strcmp(obj.type,”BLOCK") &&
 find_closest_destination_from_block(&obj) &&
 !empty_destination(&obj)) {
 move_block(&obj);
 strcpy(status,"arm-is-moving");}
else if (!strcmp(obj.type,"ARM") &&
 find_closest_destination_from_arm(&obj) &&
 !empty_destination(&obj)) {
 move_arm(&obj);
 strcpy(status,"block-is-moving");} }

Actions A

Preconditions

Preconditions

Actions B

z

Fig. 3. Control Rule for Container Domain (Insertion).

Fig. 4. Control Rule for Container Domain (Removal).

Fig. 5. Planner that takes two states as input and produces a plan.

4 Vision Support for Replanning

For each of the domains, vision information is supplied to the replanning level. The
objects in mixed pieces domain are labeled with letters, A, V, S, K, P, F for black
pieces and X, Y, Z, T, U, W for white pieces (Fig. 6). The blocks in port domain can
be labeled with any of these letters. In order to recognize the objects, the top view
image of a domain is grabbed after each execution step of a plan and is segmented. A
backpropogation neural network is used for the recognition of the letters in the labels.
Currently, the number of hidden layers in neural net is one and a feature vector with

planner(initial, goal)
{
While(!all goals are executed)
 Apply domain specific search control rule ;
}

void controlRule_container_insertion(){
int x,y,z;
if(!strcmp(obj.type,"container") &&
 !find_closest_empty_destination_from_arm(&obj,&x,&y,&z)) {
 insert_container(&obj,x,y,z);
 strcpy(status,"insertion-is-completed");}
else {strcpy(status,"no-place-for-insertion");
 unprocessed --; } }

Actions

 Actions

Prec.

void controlRule_container_removal(){
find_pose_of_container(&obj);
if(!strcmp(obj.type,"container") &&
 !container_top_full(&obj)) {
 remove_container(&obj);
 strcpy(status,"removal-is-completed");}
else { make_container_approachable(&obj);
 remove_container(&obj);
 strcpy(status,"removal-is-completed");}}

Preconditions

Actions

Actions

16 features is supplied for a letter to be trained and recognized. Each segmented
image is fifty pixels in length and width.

In port domain, blocks are allowed to be on top of each other but a two
dimensional top view of the domain helps in obtaining the Observed_World_Model.
However, Expected_World_Model for the port domain should have three dimensions
to keep a correct belief of the workspace during execution. During detection of
exogenous events in port domain, three dimensional Expected_World_Model is map
into two dimensions with only storing the top level blocks (in one container cell, a top
element can be at level 3 where as in another one it can be at level 1) and making
comparison possible with two dimensional Observed_World_Model. In mixed pieces
domain, there’s no need for such a mapping since both of these models have two
dimensions.

 Fig. 6. A top view of mixed pieces domain.

The segmented cells and Observed World Model obtained from Fig. 6 is in Fig. 7.

 Fig. 7. Segmented cells and the Observed_World_Model obtained from Fig. 6.

A
V A

K P
 V

F K
S

5 Conclusion

In this study, we have explained the details of a replanning framework we have
proposed for achieving robotic tasks. Although the implementation is done in blocks
world due to the technical constraints, the implemented architecture is kept general
for other domain definitions such as constraints, search control rules, etc. The
originality of the replanning mechanism comes from the fact it incorporates a learning
based decision making paradigm and it is at the highest level of abstraction instead of
in sequencing and reactive control layers of three tier architectures. The
implementation shows us that this approach can be used in planning domains also
increasing efficiency in planning and executing plans.

6 References

1. Arkin, R. C., “Behaviour-Based Robotics”, The MIT Press, Cambridge,
Massachusetts, 1999.

2. Gat, E., 1998, “Three Layer Architectures”, in Artificial Intelligence and Mobile
Robots, MIT Press.

3. Laird, E. L., Congdon, C. B., and Coulter, K. J., 1998, “The Soar User’s Manual
Version 8.2”, University of Michigan.

4. Veloso, M. M., Carbonell, J., P'erez, M. A, Borrajo, D., Fink, E., and Blythe, J.,
1995, ”Integrating planning and learning: The Prodigy architecture”, Journal of
Experimental and Theoretical Artificial Intelligence, 7(1), pp. 81-120.

5. Koening, S. and Simmons, R. G., “Xavier: A Robot Navigation Architecture Based
on Partially Observable Markov Decision Process Models”. , in: Artificial Intelligence
and Mobile Robots, D. Kortenkamp, R.P. Bonasso, R. Murphy (eds.), MIT Press,
1998.

6. Yıldırım, Ş. and Tunalı, T., 1999, “A new methodology for dealing with
uncertainty in robotic tasks”, XIV. Int. Symp. on Comp.& Inf.Sci., Kuşadası,
TURKİYE.

7. Haigh, K. Z., 1998, “Situation-Dependent Learning for Interleaved Planning and
Robot Execution”, Ph.D thesis, CMU.

8. Pryor, L., & Collins, G., 1996, “Planning for Contingencies: A Decision_based
Approach”, Journal of Artificial Intelligence Research, 4, pp. 287-339.

9. Newell, A. and Simon, H. (1963). GPS: A program that simulates human thought.
In Computers and Thought, ed. Feigenbaum and Feldman. McGraw-Hill, New York.

