
Google Maps And Image Mashup Final Report

Trond Stokkeland

December 2, 2009

Contents

Planning 2
The Problem . 2
The Goal . 2
Means . 3
Methods . 3
Milestones . 3
Critical Elements . 4
Resources . 4
GANTT . 5

Implementing 6
Collecting data . 6
Describe . 6
Transform . 7
Move . 8
Presenting using Mashup (KML) . 9
Automation . 10

Documentation 11
End product . 11
Conclusion . 11

Process . 11
Product . 12
Suggested future work . 12

1

Planning

The Problem

Being able to match images taken off the same building but 150 years apart can
be quite a bit of work. First you must have a 150 year old image and make
a digital copy off it. Then you have to find out where the picture was taken
and take a new picture from the same place in the same angle. Then create a
mashup with Google Maps in order to get it placed on a map. All of this have
to be done for each set of images you have.

If we assume you have found a old picture to start with and you have good
knowledge about the local area, finding out where it was taken shouldn’t take
too much time, let’s say ten minutes per picture. We can be nice and say that
during those ten minutes you also take the new picture. Thats all good. But
when you come home you need to match all the pictures, if you took them in
a specific order you might do it in a few minutes, lets say two minutes. If you
then have spent about a day to create a script that creates KML files for a set
you still need to run it once per image. If you then need to spend maybe two
more mintues on editing the script for each set of images. You will then have
spendt fourteen minutes per set. With one hundred original images that will
take almost twentyfour hours.

The Goal

Today it is fully possible to get cameras that take pictures with geo-data in
their metadata. The process of matching images is something that could be
automated but it would require a alot in form of image recognition. Another
project that should have been made is a easy way of browsing two sets of images,
then if you find a match you can with a button export geo-data from one image
and insert them into the other.

This project is all about what happens after you have matched images and they
all have geo-data in their metadata. The idea is that all you have to do is
upload the images to the server and the rest will happen there. That should

2

make it possible to save maybe two minutes per set, with one hundred images
that should save you almost three and a half hours work.

Means

The job will be done using a bash scrip that extracts the meta data from the
images using exiftool and compares the information. When it finds a match it
generates a KML file linking the matching images with proper placement on
Google Maps. To automate the process abit more it is just to place the script
in the servers scheduler and run it every so often.
To prevent the script from going throught the same files over again they can be
moved to a different folder. That way the script wont take up much CPU time
when there are no new images.

The legal implications in this project is the use of historic city photogrphs from
the museum collection. The product of this project will be released under the
[2]creative commons BY-SA-NC lisence. The product include the code, the
generated KML files and pictures taken.

Methods

Any text editor will do to write the bash script in.
Exiftool will be used to extract the metadata.
Imagemagick will be used to resize the images.

Milestones

1. Finish pre-project report

2. Create test images with Geo-taggs

3. Photograps aquired from the museum.

4. Photographs taken

5. Script matching images

6. Script moving matched images to seperate folder

7. Script generating KML for a set of images

8. Script open a exsisting KML and adds a new set of images

9. Write final project report

This list is created as reference for the milestone column in the GANTT diagram.

3

Critical Elements

• Script matching images

• Script generating KML

Resources

• Borrow camera from Høgskolen in Gjøvik.

• Get old images and location from the museum.

4

GANTT

Milestone Activities Resources Dependencies Risk 45 46 47 48 49 Hours
Pre-Project

1 Writing the
pre-project
report

15 15

Final Project
2 Take two

random
images
and insert
geo-taggs

Two images 1 1

3 Get pho-
toes from
museum

Museum Data
cor-
rup-
tion

1 1

4 Take photoes Camera Borrow cam-
era

Data
cor-
rup-
tion

2 2

5 Code match-
ing part of
script

Test images
or real im-
ages

Bugs
in
code

2 2

6 Code file
moving

files Bugs
in
code

1 1

7 Code KML
generation

Image
matching

Bugs
in
code

5 5

8 Code KML
editing

KML gener-
ation

Bugs
in
code

2 2

9 Write fi-
nal project
report

Done with
everything

7 8 15

SUM 15 7 7 7 8 44

5

Implementing

Collecting data

The project began with finding 13 images from Mjøsmuseet, [6]Gjøvik’s web-
site. All of them was taken around 100 years ago, and didn’t realy have much
metadata at all. Then in week 47 Christian Hochlin and I went to Mjøsmuseet,
Gjøvik to get locations of the images marked on a map, this way we knew ap-
proximatly where the pictures were from. The same week Christian Hochlin,
Pelle Bjerkestrand and I went out to take pictures off the same locations. The
problem with taking pictures 100 years later is that alot of things change, trees
grow, new buildings stand in the way and old buildings have fallen down. But
all in all it went pretty good. When this was done we had eleven usefull sets of
images.

When taking the new pictures we used a [4]Nikon D3000. With the camera
came a [5]GP-1 GPS receiver that refused to work with the camera. What we
ended up doing was to take the same pictures with a iPhone. This way we had
a source for the correct gps metadata.

Describe

As my project is about sorting and generating kml for well described images,
I had to make sure the images were well described. In order to make them
well described I had to insert a few things into the metadata of every image. In
the images taken by Christian Hocklin, Pelle Bjerkestrand and me I inserted au-
tor,copyright information and location name (ImageDescription) before I started
to look at the GPS data.

As neither our old or our new images had any GPS data in them I had to
extract the GPSLatitude and GPSLongitude from the images taken with the
iPhone and insert it into the old and new images. A problem I had with the
metadata here were that it is a field called GPSPosition that consists of both
GPSLatitude and GPSLongitude, but of unknow reasons I wasn’t allowed to
use that field. So the script now have to check both GPSLatitude and GPS-

6

Longitude instead of only GPSPosition. This is very bad when it comes to the
performance but atleast it works.

Another minor problem with the metadata was that the old images didn’t
gave any creation date inn them. So when the script find a image without a
date tag it sets the date as unknown

Transform

Using [8]ImageMagick’s convert program to create thumbnails for every image
to reduce the size of images and the amount of data needed to load. The
thumbnails link to the original images so that those interested still can access
the original images. It can be discussed wheather the linked images also should
be lowered abit in size, but for this project I dont see the need.

To give some numbers. The original images from the museum are from
around 40 to 60 KB, while the thumbnials are down to 4 to 13 KB. The space
saving is pretty good thinking percentage here and it gets even better for the
new images. While the originals vary form 2.8 to 3.3 MB the thumbnails are
down to around 60 KB.

7

Move

I found the easiest way to arrange the images is to have one folder for the un-
sorted images one for the sorted and a subfolder for the thumbnails. This makes
it to figure out when there are new images to sort, simply by checking if the
unsorted folder is empty.

8

Presenting using Mashup (KML)

The presentation of the data is created by using a mashup of old images from
the museeum, new images from my work and it all placed into a KML document
that can be inserted into google maps as showed in the image. I understand
that it is easy to create a kmz file from the kml file, it is just to pack it into a
zip archive and then renaming it to a .kmz file. There were two reasons for me
not doing this. The first is that the project suggestion said to generate a kml
file, and the second reason is that in the [1]example in suggestion one there is
also used a kml file.

9

Automation

The automation process here is easy. Just to put new images into the unsorted
folder, and whenever the server scheduler makes a call for the sort.sh script the
script will check for files If it find new files it will create a kml file, or add the
images to a excisting kml file. When that is done it will move the images to a
folder for sorted images.

The idea here is that when installing the script on a server you just place the
script files and the folders where you want them. After that you only have to
put the main script into the servers scheduler to make it run automatic updates.
What I have heard is that adding the script to a the [9]Crontab file would be the
way to do this. I have not set up the contab on the loke server. This is partly
because Im not sure I have access to do that and partly because of problems
with ssh unables me to try for the moment.

10

Documentation

End product

Images taken by Christian Hochlin, Pelle Bjerkestrand and me are used side by
side with the images from the museeum

generate.sh is the script that takes two images as arguments creates thumb-
nails and places them into the kml file, for the first run it generates the kml file.

The sort.sh the main script that sorts the images and calles on generate.sh
when it finds a match before it moves the images to the sorted folder.

The gjovik.kml is the kml file generated by generate.sh .

echo (sed′d’ KML) >KML

For an unknown reason the part of the script that removes the kml foot tag also
removes the formatting of the file. So Everything except for the last placemark
is hard to read in the file.

[7]The website shows abit about the project and how the result ended up.
All the images and the script files are accessable via the page. This is with
exception of the images taken with the iPhone, because I did not see any reason
to put them up on the webpage.

Conclusion

Process

The gathering data part took abit more time than expected. Getting infor-
mation from the museeum went as planned, but taking the new images took
us around three hours. What took so much time was walking around to the
different places and making sure we were at the right spot.

11

The coding also took more time than expected, instead of the total of ten
hours I’ve spend about 15 hours. This is becuse this is the first bash script I
ever write that is more than a couple of lines. So I used alot of time looking up
how things work, and what commands could be used.

The webpage was not a part of the plan because it is only a simple webpage
used to present the work. Still it took me about two hours getting everything
on the page as it is now.

Product

The end product does what I had in mind when starting this project. It makes
it possible to upload images to a folder on the server, then the script will match
the images and add them to the kml file.

Suggested future work

Features that could be added to the script:

• Relative paths, now the script requires the images to be in a specific folder.
Would be nice to pass the path as an argument to the script.

• Filenaming, now the script assumes that no images has the same name.

• Errorchecking, if something isn’t as its supposed to be the script wont take
that into account. Eksample if metadata is missing or if the filemoving
fail.

• Multiple images from one location. Might be handy to support several
images taken at the same place.

12

Bibliography

[1] , Refsvik, Kjell Are 20091021imt4951introduction.pdf

[2] , creative commons BY-SA-NC lisence creative commons BY-SA-NC lisence

[3] , Cooper, Mendel Advanced Bash-Scripting Guide

[4] , Nikon D3000 Camera information

[5] , GP-1 GPS receiver GPS information

[6] , Mj{osmuseet http://www.mjosmuseet.no/

[7] , The website Website

[8] , ImageMagick http://www.imagemagick.org/

[9] , Crontab Crontab - Quick reference

13

http://www.ansatt.hig.no/kjellr/imt4951/_lectures/20091021_imt4951_introduction.pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://tldp.org/LDP/abs/html/index.html
http://www.europe-nikon.com/product/no_NO/products/broad/1821/overview.html
http://www.nikonusa.com/Find-Your-Nikon/Product/Miscellaneous/25396/GP-1-GPS-Unit.html
http://www.mjosmuseet.no/
http://www.stud.hig.no/~091212/index.html
http://www.imagemagick.org/script/index.php
http://www.adminschoice.com/docs/crontab.htm

	Planning
	The Problem
	The Goal
	Means
	Methods
	Milestones
	Critical Elements
	Resources
	GANTT

	Implementing
	 Collecting data
	 Describe
	 Transform
	 Move
	 Presenting using Mashup (KML)
	 Automation

	 Documentation
	End product
	 Conclusion
	Process
	Product
	Suggested future work

