
Documenting Changes, Gjøvik city

Christian Hochlin

December 1, 2009

Contents

1 Abstract 2

2 Introduction 3
2.1 Planning . 4

3 Process 5
3.1 Initial segmenting . 5
3.2 Deciding on dependencies . 5
3.3 Re-shooting the images . 6
3.4 Writing the script . 6

4 Conclusion 10
4.1 The finished script . 10
4.2 Possible extensions . 11
4.3 Automation . 12

1

Chapter 1

Abstract

To create KML-files with a lot of images placed correctly is a tedious task to
do manually, and a rather mechanical one too. This projects aim was to take
advantage of the mechanical nature of making kml-files with lots of pictures,
and automate it, to save time. It was based on a specific task, namely the 150th
anniversary of Gjøvik city, which needed old images, and new images from the
same angle presented side by side on a map. Bash-scripting were used, with
exiftool as the only dependency, and the resulting script makes a KML-file with
the paired images at the correct location, with little preparatory work for the
user.

All scripts, and this report, are licensed under CC-BY-NC-SA.

2

Chapter 2

Introduction

This project was made as a part of the Applied Digital Workflow course1 at
Gjøvik University College. It was possible to choose our own project, or pick
one of the project suggestions. The project that was chosen focused on the city
of Gjøviks 150th anniversary. To celebrate that, a number of old images were
supposed to be re-shot, and presented with google maps. To do this by hand
would require a lot of time and manual labour. The steps needed to complete
the project would be:

• Reshooting old photographs

• Generating a kml-file with the old and new image juxtaposed at the correct
location.

• Repeat for each photograph

Repeating this for each image would be tedious and very time-consuming. A lot
of time could be saved by making a script to automate parts of the workflow.
The question was how much of such a workflow that is possible to automate. The
scope of this task was to create a more optimized workflow, with less manual
labour needed, using freely available tools, scripted with bash-scripting in a
UNIX environment.

The main script should be made with these statements in mind:

• Old images need to be paired with new images with correct geodata.

• The new images have relevant metadata embedded in them.

• The script should be tailored to this specific task
1http://www.ansatt.hig.no/kjellr/imt4951/

3

2.1 Planning

The planning started in week 43, and ended when work on the project began
in week 46. See Pre-Project report for the full plan. The final Gantt-diagram
ended up like this:

Milestones Activities Resources Dependencies Risk Week Hours

1.Plan 45 20-25
1.1 Research how to write Library/Internet - - 44 5-10
1.2 Write plan - 1.1 - 45 10-15

2.Final Report Data corruption 49 30-40
2.1 Capture images Camera Camera available - 46 5-8
2.2 Plan the script Internet - - 46-47 4-6
2.3 Write script ” 2.2 Bugs 47 10-15
2.4 Test & optimize script ” 2.3 - 47-48 3-8
2.5 Write final report Library/Internet - 48-49 9-11

4

Chapter 3

Process

3.1 Initial segmenting

The project was split in two main parts, with one being the collection of data,
and the second the following processing of the collected data. As specified in
the Gantt-diagram, the collection of data and the processing part, were not
dependent on one another. This means that they were interchangeable, and
could be done independent of each other. The collection of data was dependent
on a camera borrowed from the school, and the processing was not. That could
be done with dummy resources that behaves as the real data, and would, on a
later stage, be replaced by the real photographs. So even if the cameras were
inaccessible much of the time, that would not slow down the work.

3.2 Deciding on dependencies

The scripts dependencies were important to decide on, to determine what could
and could not be done. It was decided to depend on few third-party applications,
to make the script as portable as possible. The two dependencies which were
considered, was Exiftool and Imagemagick. Exiftool was impossible to do with-
out, but whether or not to use Imagemagick was another question. Carefully
weighing the pros and cons of using it had to be done. Pros:

• Able to make thumbnails for the maps-balloons.

• which means faster loading of the images in the balloons.

Cons:

• One additional dependency.

5

• Double the amount of images to upload.

In the end, Imagemagick was not used. The decision to use as few dependencies
as possible outweighed the thumbnail-generating. With a little bit of HTML, it
was possible to resize the large images and use as thumbnails, even though the
loading time increased.

3.3 Re-shooting the images

An employee at Mjøsmuseet1 helped pinpointing the location of a dozen old
images from Gjøvik, and marking them on a map. The cameras arrived later
than estimated, so this part was pushed back to week 47. Also, the camera
was not able to supply the GPS-device with power, and no way to test what
part (cable, connector) was broken due to sickness. This obstacle was overcome
by using a GPS-enabled phone to capture photos at the same location. Armed
with a map and a camera, the re-shooting was expected to take about an hour
and a half. Turns out a lot of new buildings have been built the last century.

Some of the pictures were taken where it now stood large buildings, so some
of the photos are only approximately taken from the same spot. Because of
that minor inconvenience, it took a lot longer than estimated. The camera used
was a Nikon D5000, and an Apple iPhone for capturing the location data. The
rest of the time scheduled under ”Capture images” in the Gantt-diagram were
meant for setting up the camera to work with the GPS-receiver, and logistics
associated with the re-shooting.

A simple script were made that looped through the images from the iPhone,
and transferred the location data to the high quality pictures from the Nikon
camera. This script is not included here, as it is not a part of the task.

3.4 Writing the script

The first thing that was needed was to decide what part of the workflow to au-
tomate, and recognize the limitations associated with the project. Some parts
of the project obviously had to be done manually, given the time frame that was
available. Pairing the old and the new images had to be done semi-manually,
and some solutions to that had to be considered. What is the easiest way for
a computer to pair two images? Compare a common property, and pair those
that match. The question was what property to compare. Comparing geodata
and pair those at the same location would be the most effective, and least labo-
rious method, if both images were taken with a modern camera. Unfortunately,
hundred year old cameras don’t have GPS, so for this purpose, that approach

1http://www.mjosmuseet.no/

6

wouldn’t work. Finally, comparing filenames came out on top as the best com-
promise between less initial work, and the scripts accuracy. This means that
the user has to rename the old and the new photographs so they have the same
name, but are located in different folders.

Using KMZ-files were considered, but because of the decision to not use Im-
agemagick, the usage of kmz-files would be useless too. Making a kmz-file with
all the non-thumbnails would generate a pretty large file, and Google Maps will
not read a kmz-file of that size.

The ability for users to specify if they wanted the script to upload the data
or not was planned to be supported a long time, but it was decided that that
certain functionality wouldn’t add any value to the project. KML-files need
to be on the internet to work correctly, and making kml-files with local paths
would then be pointless, as they would have to be moved eventually.

It was also desirable to only use input arguments, such that the user can write
one line, and let the computer/script do the rest. By using ”read”, the user
would be forced to sit and watch the script.

The script takes a number of input arguments. The first two are location (rela-
tive from current dir) of the folder containing new and old photos respectively.
It then loops through the new images, and processes the corresponding old.
This is done in case the number of old and new images differ from each other.
All relevant metadata comes from the new images, so it wouldn’t make sense to
make the kml-file based on the old images. The script copies geodata from the
new photos onto the old, so they can be used independently for other purposes,
if it is needed. Then the KML-file is generated. If the script is run without
input arguments, a reference list with the needed input is shown.

The remaining input arguments deal with uploading to the web. The domain
to upload the data to, the username for the domain. The last two are optional.
The first should be used when the public url differs from the server-url, and
the second when a different location than the root is desirable. The biggest

7

problem with the script becomes apparent here. The aim was to make a script
one could start, and come back to later when it was finished. With the addition
of uploading data to the web, this is not as easily obtainable. The scp-function
prompts the user for a password in the middle of the script. There is no portable
way to get around this. The closest would be to set up RSA, but then the script
will be less portable.

The script has a simple append-functionality, so if a KML-file with the same
name already exists, it will append the new entries to it, else it will make a
blank file. This was added to make it easier and faster to keep it updated.
One needs only to process a pair of images once, and additional entries, made
at a later date, will be appended to the same KML-file. The names on the
new images cannot be the same as the names on the already existing images.
Furthermore, if images are appended to a document, the original entries will
lose its formatting.

When uploading to a server, absolute paths were needed. Google maps does not
work properly with relative paths in KML-files. This would not be a problem if
every server had the same url for http-requests and ssh-requests. Unfortunately,
not every server does, so the solution was to accept an additional input argu-
ment for those cases where the http-url differs. A related problem was figuring
out a way to upload the images and the KML-file to the server in one go. If
more than one scp-procedure was used, the user would have been prompted for
his password multiple times, which is unacceptable. Several attempts to work
around this were made. When more files or folders were specified, the resulting
folder structure on the server, would be unpredictable, and would in some cases
produce a lot of superfluous folders. The final script makes a temporary folder
where it places all the files in a predictable folder structure, and uploads the
contents of that folder to the web server.

The output from the script looks like this: (Please note that the ”id: cannot
find ...”-line is produced by the server, and not by the script)

8

Additionally, a second script was made. This can be used to ease the adding
of correct metadata to the images. It checks if the fields, specified by the exif-
specification2, for Author, Date and Time, Copyright and description is set. If
they aren’t, the user will be prompted to fill them out, with a reference to the
current file. This is specifically tailored to updating metadata on old images, so
it is only possible to add year as the date, as it is rather rare to know the exact
date a very old image was taken. Unknown is also a possible input for year (as
shown in the image below). This will set the year to 0000. The main script will
recognize this, and write unkown date in the KML-file.

Both scripts also check if the folders exist, and outputs an error if they don’t.

2http://www.exif.org/Exif2-2.PDF

9

Chapter 4

Conclusion

4.1 The finished script

The final product contains two scripts. The first was made to make it easier
to add metadata to images. This is not completely automatic, but can save
the user a lot of time, compared to manually checking if the metadata exists,
and add it if not. The second, and most important script is the one which
pair images, and make the kml-file. Both of the scripts are only dependent on
exiftool, and are therefore highly portable to any machine running a UNIX-
based Command Line Interface. Some Linux-distributions are even packaged
with Exiftool. This script assumes that the new pictures have correct geodata
embedded in them, and that there is one matching old image for each new one.
The input arguments needed are:

1 Location of folder with new images

2 Location of folder with old images

3 Name of the generated kml-file

4 Server to upload data to

5 Your username on that server

6 (optional) The url to the server, if it differs from the uploading-address

7 (optional) The folder to upload to on the server

The KML-file produced have marker balloons that look like this:

10

There are a couple of drawbacks to the finished script. Because the KML-file
loses its formatting when appended to, the KML will be harder to read for
humans, and therefore harder to update manually (e.g. correct small mistakes).
The files that are paired need to have the same name and extension (this is case
sensitive too, unfortunately) as each other.

The actual work was kept surprisingly in line with the initial plan. The capturing
of images that was supposed to happen in week 46, had to be pushed back due
to cameras being unavailable, but that was taken into account, and did not
slow down the progress. A feature mentioned in the pre-project had to be cut
though, the ability to use geodata from a separate device. This was not done
because of time constraints, but due to lack of test data.

4.2 Possible extensions

This script was created for a very specific cause – The anniversary of Gjøvik
city – and thus, a useful modification for this script would be to make it able
to work in a more general way. The script could be split into two. One part
would be covering the specific functionality for this project, pairing images where
one doesn’t have any relevant metadata, and transfer metadata to it. The
second would be a more general script, that paired images based on the geodata
contained in the metadata. Furthermore, a cron job could be set up to watch a
folder for new images, and append them to the kml-file automatically.

11

As mentioned in the pre-project, choosing between geodata extracted from the
files themselves, and from an external device would be a natural extension to
this project. Unfortunately, there was no access to external gps-data, and to
integrate that kind of functionality would require access to some dummy data.

4.3 Automation

Is automation of workflows useful? The answer to that would be a big resounding
yes. Assuming the images have well-formed metadata, the script uses a couple
of seconds to extract all the metadata, and generate its part of the kml-file from
two images. A normal human would maybe use more than a minute for each
pair of images. With a hundred images to be paired, the script uses just over 3
minutes, and the human would use more than one and a half hour.

The challenge is to recognize which tasks are suited for automation. Some tasks
would maybe require more work up front to prepare the data than was saved on
automating it in the first place. Purely mechanical tasks like this, on the other
hand, are well suited for a script, and works well with little work up front for a
user.

12

