
TLAP
A time-lapse movie generation project

Vlad Caia

Contents

1 Pre-project 3
1.1 Project idea and background . 3
1.2 Problem statement . 3
1.3 Project goal . 3
1.4 Research . 4
1.5 Project cost and risk analysis . 4
1.6 End result . 4
1.7 Gantt chart . 5

2 Development and implementation 6
2.1 License . 6
2.2 Dependencies . 6
2.3 Collecting data . 6
2.4 Transformation of data . 7
2.5 KML mashup . 8
2.6 Distribution . 9
2.7 Automation . 10

3 Documentation 12
3.1 Work log . 12
3.2 References . 12
3.3 Code . 13

3.3.1 The shell script . 13
3.3.2 The KML file . 14
3.3.3 The web page source . 15

4 Conclusion and future work 16

2

Chapter 1

Pre-project

1.1 Project idea and background
In 2011, The City of Gjøvik celebrates its 150th birthday, and we are looking to
create a range of projects that participates and add to this celebration. The goal
of this project is to use open source command-line tools to construct a workflow
that could help in the collection, description, transformation, transportation
and publishing of timelapse movies from the city of Gjøvik.

Time-lapse1 photography is a cinematography technique whereby
each film frame is captured at a rate much slower than it will be
played back. When replayed at normal speed, time appears to be
moving faster and thus lapsing. Processes that would normally ap-
pear subtle to the human eye, such as the motion of the sun and stars
in the sky, become very pronounced. Time-lapse is the extreme ver-
sion of the cinematography technique of undercranking, and can be
confused with stop motion animation.

1.2 Problem statement
The real problem that we are facing here is how to implement such an au-
tomation process with the tools that we have at our disposal. To make it all
happen, a lot of these tools have to work togheter to become integrated into a
single tool. We will use and/or develop open source software across different
platforms, generaly on a Linux based environment.

1.3 Project goal
Our mission is to create an automatic workflow that helps the user create and
integrate effortlesly, in every type of digital medium, a timelapse video shot at
a location of our choice. The way we are going to achieve this, is to create our
own scripts/programs making use of open source software.

1http://en.wikipedia.org/wiki/Time-lapse

3

1.4 Research
The solution to the problem will start with research. First we will identify the
best open source tools suited for our needs. Secondly all the documentation
on these tools have to be studied in order to have a better understanding on
how these tools work and how we can use it in our project. The internet offers
a vast area of research on different topics. A torough research on time-lapse
photography will better educate the researcher on how to do it correctly and
efficiently. Further research on how we can achieve a workflow between the
capture camera and the computer and the end video will be done.

1.5 Project cost and risk analysis
For an estimation, we can say that both data collection (images for later pro-
cessing into a final time-lapse video), research and code development will take
a fair equal amount of working time.

Problem/Risk Probabilty Consequence Action
Poor requirements 2/5 If requirements

are unclear, in-
complete, too
general and not
testable there will
be problems

Do a deep analy-
sis, reanalyze and
estimate if tasks are
duable in the time
and budget frame

Unrealistic sched-
ule

3/5 If to much work is
crammed in too lit-
tle time, problems
will arise

Allow adequate
time for planning,
design, testing, bug
fixing etc. plus
allow some slack
for use as a backup
time

Miscommunication 4/5 If developers don’t
grasp the need
of the client or
client has erro-
neous expectations,
problems arise

Re-evaluate, keep
the communica-
tion tight during
the development
process; insure
that informa-
tion/documentation
is availalbe and up-
to-date

1.6 End result
The end result should be a well documented script/program based on open
source software in an open source environment. In addition to this, this code
should reflect the highest degree possible of the automation workflow.

4

1.7 Gantt chart

5

Chapter 2

Development and
implementation

2.1 License
This code provided in this project is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Norway license.
http://creativecommons.org/licenses/by-nc-sa/3.0/no/deed.en

2.2 Dependencies
gPhoto - gPhoto is a set of software applications and libraries for use in dig-
ital photography. gPhoto supports not just retrieving of images from camera
devices, but also upload and remote controlled configuration and capture, de-
pending on whether the camera supports those features.
ImageMagick - ImageMagick is an open source software suite for displaying,
converting, and editing raster image files. It can read and write over 100 image
file formats.
FFmpeg - FFmpeg is a computer program that can record, convert and stream
digital audio and video in numerous formats. FFmpeg is a command line tool
that is composed of a collection of free software/open source libraries.

2.3 Collecting data
Two types of data are used in this project: image and GPS data. Using a DSLR
camera togheter with a GPS device is crucial for our project goal. For ’in-
home’ testing and coding I’ve used an NIKON D40 DSLR camera that doesn’t
have GPS taging capabilities and neither do I posses any GPS device for the
position data. I’ve coded a GPS location manual input (more on this in the next
chapters); for the field we will use the NIKON D5000 kit that comes equiped
with an external GPS GP-1 device that can automaticaly tag the GPS data in
each picture. Important note in the collection of images is the settings and the
lens used in capturing the shots. An automatic lens is preferable for a consistent

6

shutter speed and aperture setting. Also the focus should be set on manual, the
subject has to be focused before hand. Having these things in place guarantees
a balanced quality on all the captured images, no sharp cotrasts or blured focus,
suitable for a time-lapse movie.
Another important fact that has to be accounted is the way the shots are taken.
We need a timer that takes shots at different interval times. Some cameras come
with this feature built-in or with extra software run on a computer which the
cameras are interfaced with. I had another idea in this project. The types of
model of digital photo cameras is huge thus I’ve planned to use an open source
application that can be used with all these models and not be dependent on the
brand or model. One of the most essential programs in the development of this
project is gPhoto.1
gPhoto is a simple program that interfaces with your digital photo camera (over
1100 camera models supported) and gives you the ability to take shots between
different time intervals. It’s a fast and a reliable application giving you the
posibility of modifying different camera paramteres as well (such as shutter
speed, flash settings etc.)
Another aspect of collection of data is the quality of the images taken. The
FINE quality setting has been used on the camera, as well with the M(edium)
2256x1496 resolution. One thing to note is how gPhoto works. The capturing
sequence starts, the image is taken and downloaded directly to your specified
folder on the computer. In this way we don’t have to worry about running
out of storage space on the camera’s SD card. For a better visual experience
I focused on using the 720p HD final movie format togheter with a flash video
file suitable for web integration.
The system is designed to work in a client-server achitecture, where the client
(a notebook and a camera) generates all the files need for upload and hosting
on a server.
Here is the code I’ve used for the gPhoto capturing step and the moving of files.

echo "\033[1mcapture frames\033[0m"
gphoto2 --interval $INTERVAL --frames $FRAMES --capture-image
echo "\033[1mmoving files to $CAPTUREPATH\033[0m"
mv *.jpg $CAPTUREPATH

$INTERVAL variable holds the timer interval between shots (for example
10 seconds)
$FRAMES variable holds how many shots to be taken (for example 500 shots)
–capture-image runs the capturing sequence and dumps the image files on the
hard-drive to the same location from where the script is being run.

2.4 Transformation of data
After the collection of data certain transformation steps have to be done: En-
coding, transcoding and resizing. In simpler terms, creating a time-lapse video
from a sequence of shots and converting the time-lapse video to a flash video
intended for web use as well with a preview resized image file. After research

1http://gphoto.sourceforge.net/

7

I’ve decided to use the open source FFmpeg2 software that is best suitable for
the video encoding/transcoding process. ImageMagick3 will be used to resize
the first frame of the image sequence used as a preview image for later web
use. It will not be absolutely necessary to do this resizing procedure on all the
image files as FFmpeg can do it automaticly without any extra commands. A
streamlined and simple workflow is what is best to achieve. Here is the code
I’ve used for the FFmpeg encoding and transcoding.

echo "\033[1mcreating preview image $PREVIEWFILE\033[0m"
convert $CAPTUREPATH/capt0000.jpg -resize 640x320 $PREVIEWFILE
echo "\033[1mtime-lapsing MP4 file to $MP4NAME\033[0m"
ffmpeg -y -f image2 -i $CAPTUREPATH/capt%04d.jpg -vcodec mpeg4 -vb $BR -r $FPS -s $SIZE $MP4NAME
echo "\033[1mtime-lapsing FLV file to $FLVNAME\033[0m"
ffmpeg -y -f image2 -i $CAPTUREPATH/capt%04d.jpg -vb $BRFLV -r $FPS -s $SIZEFLV $FLVNAME

-f image2 specifies that the input is a sequence of files. $MP4NAME variable
contains the name of the file the movie is being saved to.
$CAPTUREPATH has the path where the sequence of images have been moved
to.
$BR variable holds the bit rate used for the high quality file (in our case 4000kb)
$FPS how may frames per second are saved in the video.
$SIZE here happens the scalling from 2256x1496 pixels to 1280x720 pixels.
$FLVNAME holds the name of the flash video file that is being transcoded from
the original video.
$BRFLV the bit rate of the flash video file (in our case 800k)
$SIZEFLV the size of the flash video file (in our case 640x360 to maintain the
16:9 aspect ratio)

2.5 KML mashup
Mashing up the GPS location with the appropiate time-lapse video and main-
taing a high level of automation workflow was the focus of this project. An
important part of KML is the GPS data. This data exists in our images as
meta-data. Also the user is prompted with an input field where he/she can
input the single line coordinates found in Google maps. This way even if you
don’t own a GPS device, you can still aproximate your location manualy. For
extracting the relevant GPS data from the image file I’ve used Exiftool4. Also
an important note about the KML generation, after several attempts in trying
to embed the flash video player I’ve used on the project’s website, I decided
to post a link with the preview image file. Seems like Google has deliberately
disabled flash player embeding on their maps, Youtube works fine but any extra
player will just not work. Here is the code I’ve used for Exiftool and KML
dynamic generation.

echo "\033[1mwriting to $KMLFILENAME\033[0m"
rm tl.kml

2http://ffmpeg.org/
3http://www.imagemagick.org/
4http://www.sno.phy.queensu.ca/~phil/exiftool/

8

printf ’<?kml version="1.0" encoding="UTF-8"?>\n’ >> $KMLFILENAME
printf ’<kml xmlns="http://www.opengis.net/kml/2.2">\n’ >> $KMLFILENAME
printf ’\t<Placemark>\n’ >> $KMLFILENAME
printf ’\t\t<name>Time-lapse project</name>\n’ >> $KMLFILENAME
printf ’\t\t<description>\n’ >> $KMLFILENAME
printf ’\t\t<![CDATA[\n’ >> $KMLFILENAME
printf ’\t\t<img src="http://www.stud.hig.no/
~050704/preview.jpg">Time-lapse project\n’ >> $KMLFILENAME
printf ’\t\t]]>\n’ >> $KMLFILENAME
printf ’\t\t</description>\n’ >> $KMLFILENAME
printf ’\t\t\t<Point>\n’ >> $KMLFILENAME
echo "\033[1mcheckin for gps data in $CAPTUREPATH/capt0000.jpg\033[0m"
COORDLAT=$(exiftool -GPS:GPSLatitude -n -b $CAPTUREPATH/capt0000.jpg)
COORDLONG=$(exiftool -GPS:GPSLongitude -n -b $CAPTUREPATH/capt0000.jpg)

if ["$COORDLAT" != ""] && ["$COORDLONG" != ""] ; then
COORD=$COORDLONG,$COORDLAT
echo "found GPS Position:" $COORD
printf ’\t\t\t\t<coordinates>’$COORD’</coordinates>\n’ >> $KMLFILENAME

else
printf "\nInput coordinates data (LAT,LONG): "
read COORD
printf ’\t\t\t\t<coordinates>’$COORD’</coordinates>\n’ >> $KMLFILENAME
fi

printf ’\t\t\t</Point>\n’ >> $KMLFILENAME
printf ’\t</Placemark>\n’ >> $KMLFILENAME
printf ’</kml>\n’ >> $KMLFILENAME

We remove any old KML files and begin with a clean slate. The KML
structure used is a basic one with only a link and name. We exctract the GPS
location to two variables $COORDLAT and $COORDLONG. We then use an IF
statement where these two variables are checked and if they are not empty (the
GPS tags are present in the image file and contains coordinates) we concatenate
them in a single string and save it to another variable $COORD that is also
inserted in the <coordinates> tags in our KML file. If the GPS data is not
found in the image file, the user is prompted for manual coordinates input.
This workflow ensures a dynamic KML generation keeping the user involvment
at mininum.

2.6 Distribution
After all of our files have been generated (the high quality time-lapse video, the
flash video and the KML file) an uploading process starts to a designated host.
The user is prompted with the password.
Here is the code I’ve used for moving the data.

echo "\033[1muploading to $REMOTEHOST\033[0m"
scp $MP4NAME $FLVNAME $KMLFILENAME $REMOTEHOSTUNAME@$REMOTEHOST:$REMOTEHOSTDIR

9

We use the SCP5 protocol for uploading our data to the server. $MP4NAME
$FLVNAME $KMLFILENAME represents our files that are being uploaded.
$REMOTEHOSTUNAME our username.
$REMOTEHOST the server that hosts the files.
$REMOTEHOSTDIR and the directory we upload our data in.

2.7 Automation
The automation is an important fact in this project. Certain things can be
automated while some user input might be needed (like in GPS location input).
It’s an ideal thing to let the script do all the work for you and this is what the
project has been focused on. Below I have included a flow chart that represents
or the automated processes in this project. The only phases that require user
input are the phase where a camera doesn’t contain a GPS device so coordinate
input has to be done manual and when the user is prompted for password for
uploading the files to the host server.

5http://en.wikipedia.org/wiki/Secure_copy

10

11

Chapter 3

Documentation

3.1 Work log

1. Week 46-47
Setting up a pre-project
Identifying main milestones
Identifying research topics
Problem analysis
Software requirements

2. Week 48-49
Coding the script
Capture shots
Testing different case scenarios
Writing report

3.2 References

http://amwhalen.com/projects/time-lapse-photography http://www.munz.
li/?p=48 http://programmer-art.org/articles/tutorials/ffmpeg-time-lapse
http://www.flickr.com/photos/armk/3338573106/ http://www.flickr.com/
photos/armk/3338573106/ http://www.machinegrid.com/2009/05/controlling-the-nikon-d40-with-gphoto2/
http://www.moreno.marzolla.name/software/time_lapse_movies/ http://
www.imagemagick.org/discourse-server/viewtopic.php?f=1&t=12937 http:
//justinsomnia.org/2009/08/how-to-make-a-time-lapse-video-with-ffmpeg/
http://rob.opendot.cl/index.php/useful-stuff/ffmpeg-x264-encoding-guide/
http://marc.info/?l=gphoto-devel&m=95576523725934&w=2 http://old.nabble.
com/Remote-capture-with-Canon-Digital-Rebel---300D:-success-td23379934.
html http://electron.mit.edu/~gsteele/ffmpeg/ https://code.goto10.
org/projects/puredyne/wiki/photo-timelapse http://www.sno.phy.queensu.
ca/~phil/exiftool/faq.html http://highearthorbit.com/exiftool-is-easy-to-use/

12

3.3 Code

3.3.1 The shell script

#!/bin/sh
###
#IMT4951 Applied Digital Workflow
#TLAP - A time-lapse movie generation project
#Vlad Caia
#CC-BY-NC-SA
###

CAPTUREPATH="/home/vasquez/timelapse/capture"
INTERVAL=10
FRAMES=150
BR=4000k
BRFLV=800k
FPS=25
SIZE=1280x720
SIZEFLV=640x360
MP4NAME="tl.mp4"
FLVNAME="video.flv"
KMLFILENAME="tl.kml"
PREVIEWFILE="preview.jpg"
REMOTEHOST="loke.hig.no"
REMOTEHOSTUNAME="050704"
REMOTEHOSTDIR="public_html"

echo "\033[1mcapture frames\033[0m"
gphoto2 --interval $INTERVAL --frames $FRAMES --capture-image

echo "\033[1mmoving files to $CAPTUREPATH\033[0m"
mv *.jpg $CAPTUREPATH

echo "\033[1mcreating preview image $PREVIEWFILE\033[0m"
convert $CAPTUREPATH/capt0000.jpg -resize 640x320 $PREVIEWFILE

echo "\033[1mtime-lapsing MP4 file to $MP4NAME\033[0m"
ffmpeg -y -f image2 -i $CAPTUREPATH/capt%04d.jpg -vcodec mpeg4 -vb $BR -r $FPS -s $SIZE $MP4NAME

echo "\033[1mtime-lapsing FLV file to $FLVNAME\033[0m"
ffmpeg -y -f image2 -i $CAPTUREPATH/capt%04d.jpg -vb $BRFLV -r $FPS -s $SIZEFLV $FLVNAME

echo "\033[1mwriting to $KMLFILENAME\033[0m"
rm tl.kml

printf ’<?kml version="1.0" encoding="UTF-8"?>\n’ >> $KMLFILENAME
printf ’<kml xmlns="http://www.opengis.net/kml/2.2">\n’ >> $KMLFILENAME
printf ’\t<Placemark>\n’ >> $KMLFILENAME
printf ’\t\t<name>Time-lapse project</name>\n’ >> $KMLFILENAME

13

printf ’\t\t<description>\n’ >> $KMLFILENAME
printf ’\t\t<![CDATA[\n’ >> $KMLFILENAME
printf ’\t\t
Time-lapse project\n’ >> $KMLFILENAME
printf ’\t\t]]>\n’ >> $KMLFILENAME
printf ’\t\t</description>\n’ >> $KMLFILENAME
printf ’\t\t\t<Point>\n’ >> $KMLFILENAME

echo "\033[1mcheckin for gps data in $CAPTUREPATH/capt0000.jpg\033[0m"
COORDLAT=$(exiftool -GPS:GPSLatitude -n -b $CAPTUREPATH/capt0000.jpg)
COORDLONG=$(exiftool -GPS:GPSLongitude -n -b $CAPTUREPATH/capt0000.jpg)

if ["$COORDLAT" != ""] && ["$COORDLONG" != ""] ; then
COORD=$COORDLONG,$COORDLAT
echo "found GPS Position:" $COORD
printf ’\t\t\t\t<coordinates>’$COORD’</coordinates>\n’ >> $KMLFILENAME

else
printf "\nInput coordinates data (LAT,LONG): "
read COORD
printf ’\t\t\t\t<coordinates>’$COORD’</coordinates>\n’ >> $KMLFILENAME
fi

printf ’\t\t\t</Point>\n’ >> $KMLFILENAME
printf ’\t</Placemark>\n’ >> $KMLFILENAME
printf ’</kml>\n’ >> $KMLFILENAME

echo "\033[1muploading to $REMOTEHOST\033[0m"
scp $MP4NAME $FLVNAME $KMLFILENAME $PREVIEWFILE $REMOTEHOSTUNAME@$REMOTEHOST:$REMOTEHOSTDIR
echo "done"

3.3.2 The KML file

<?kml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Placemark>
<name>Time-lapse project</name>
<description>
<![CDATA[

Time-lapse project
]]>

</description>
<Point>
<coordinates>10.677658,60.805263</coordinates>
</Point>
</Placemark>
</kml>

14

3.3.3 The web page source
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>TLAP - Time-lapse movie generation</title>
</head>
<body>
<p>TLAP - A time-lapse movie generation project</p>
<p>This basic page was setup for the "IMT4951 Applied Digital Workflow" course.</p>
<p>Below you can find a flash player with the time-lapse movie that has been generated by the programed scripts.</p>

<object id="player" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" name="player" width="640" height="360">

<param name="movie" value="player.swf" />
<param name="allowfullscreen" value="true" />
<param name="allowscriptaccess" value="always" />

<param name="flashvars" value="file=video.flv&image=preview.jpg" />
<embed
type="application/x-shockwave-flash"
id="player2"
name="player2"
src="player.swf"
width="640"
height="360"
allowscriptaccess="always"
allowfullscreen="true"
flashvars="file=video.flv&image=preview.jpg"
/>
</object>

Download 720p timelapse
KML

<img alt="Creative Commons License" style="border-width:0"
src="http://i.creativecommons.org/l/by-nc-sa/3.0/no/80x15.png" />.
</body>
</html>

15

Chapter 4

Conclusion and future work

TLAP is a proof of concept for further development that automation can be
implemented very easy without any user involvment in its operation. Future
work can be derived from this starting point. Some ideas I have would be to
create time-lapse video simlutaneously from different locations. Communication
from the cameras and the client computer could be done via wifi link and the
code itself could be adapted to take care of simultaneous running tasks. One
of the ideas I came upon would be taking shots for several days and used in
later weather forecast comparison and analysis. The web page could as well be
dynamically generated and the entire project build with a DBMS in mind where
time-lapse videos are easily organised and accesed.
This project and all the code provided is a proof at what can be achieved with
open source software.

16

