
Gjøvik University College, Høgskolen i Gjøvik

imt 4951 - Applied Digital Workflow

Final report

creating time-lapse movies

by using free command-line tools

submitted by: Matthias Böhme, exchange student
e-mail: boehmem@fh-brandenburg.de

Supervisor: Kjell Are Refsvik, M.Sc.

Abstract

In 2011, the city of Gjøvik celebrates its 150th birthday. Related to celebration, one of
the suggested project ideas in the course Applied Digital Workflow was a movie with
scenes of familiar places in Gjøvik. The different locations might be described by taking
pictures in time-lapse1

Time-lapse is a technique which is slowing down a process, so that continuous projection
of the frames gives the illusion that time is passing quickly.
The outcome is a CLI workflow for generating time-lapse movies, based on open source
command-line tools. By formalizing the process of making these movies and using free
software, more people are able to deal with it.
To demonstrate the applicability, a demo movie can be found on the related webpage

1http://www.ansatt.hig.no/kjellr/imt4951/index.html#ideas

http://www.ansatt.hig.no/kjellr/imt4951/index.html#ideas

Contents

1 Background 4

2 Goals and Objectives 5
2.1 Review . 5
2.2 Changes . 5

3 Methodology 6
3.1 Overall Approach . 6
3.2 Detail . 6

4 Implementation 8
4.1 First shitty draft . 8
4.2 User involvement . 9
4.3 Features . 10
4.4 Issues . 12

5 Outputs and Results 13
5.1 Process . 13
5.2 Finding . 13

6 Conclusions 14
6.1 Differences . 14
6.2 Problems . 14
6.3 Future Work . 14

7 Recommendations 16

8 References 17

A Workflow structure 18

B Workflow screenshots 19

3

1 Background

Time-lapse is a cinematography technique for very slow changing conditions to create
a smooth impression of motion. Processes that would normally appear almost imper-
ceptive to the human eye, become very pronounced. Classic subjects are cloudscapes,
plants growing or people in the city. Camera movement during the shots is also pos-
sible, for example driving through the city would create an imagination of extreme speed.1

There is a lot of software which you can use for creating your time-lapse movies. But
mostly you have to pay for and it is far too complex for this specific task anyway. Final
Cut2 for Mac or Adobe Premiere3 for Windows are great GUI tools for video editing, but
they are just too powerful and consequently unchallenged for this project. The biggest
problem for the proper software is to automate the processes. In most cases you have to
add the images manually. Some of these tools may have also a batch processing mode,
but it’s often hard to understand and needs time to get used in it. To sum up, there is a
lot of work before, until you can compile the movie.

This time-lapse workflow automates as much as possible relevant processes to reduce
and simplify the user’s activity. It provides an environment where you can create a
time-lapse movie step by step, without big effort and much background knowledge in this
field. Users have the possibility, to build their own individual movies with open source
software.

1http://en.wikipedia.org/wiki/Timelapse
2http://www.macworld.com/article/141826/2009/07/finalcutpro7.html
3http://www.trustedreviews.com/software/review/2009/01/18/Adobe-Premiere-Pro-CS4/p1

4

http://en.wikipedia.org/wiki/Timelapse
http://www.macworld.com/article/141826/2009/07/finalcutpro7.html
http://www.trustedreviews.com/software/review/2009/01/18/Adobe-Premiere-Pro-CS4/p1

2 Goals and Objectives

2.1 Review

The main-goal agreed at the start of this project was to make the creation of time-lapse
movies easier and quicker using a formalized CLI approach. That included:

• researching the field and look for similar solutions to improve

• keeping straightforwardness

• Providing fundamental advantages over GUI based software

The specific objectives agreed were:

• make it more efficient as common video software

• set focus on the essential elements (merging, mixing, transforming)

• make simple and short scripts to find and fix program errors faster

• utilize open source command line tools

2.2 Changes

These aims and objectives remained always relevant during the development and it’s
quite difficult to argue, that some of them were probably not satisfied. It’s a matter of
argument, if a script with 850 lines of codes is still simple and short enough. Actually the
user doesn’t need to have a look inside the script. Even advanced users have only set the
focus on the first 100 lines, where they can change the constants for a more individual
look of the time-lapse movie. It’s also hard to say, if this workflow is more efficient as
other solutions. On the one hand it might be faster when FFmpeg do its job (merging
clips, adding music, encoding videos, etc.), on the other hand it takes more time than
usual when ImageMagick is working (resizing images, applying filter, etc.). Eventually it
kept the most important conditions - having a CLI workflow, which uses free command
line tools and doesn’t need specific background knowledge in video editing.

5

3 Methodology

3.1 Overall Approach

The primary aim was to develop and deliver a workflow which is easy to handle and non
commercial through using open source software for processing. Considering that no graphi-
cal user interface is implemented, users have to navigate through the workflow via prompt.

I utilized 3 external tools inside my script. Exiftool for metadata, ImageMagick for Image
editing and FFmpeg for video processing.

3.2 Detail

Exiftool tasks were rather little. I used it to get the current video size and to fit metadata
in the video. ImageMagick was employed for resizing and transforming the images which
also contained compositing them (necessary for fader and location stamp). I applied
FFmpeg for merging images and clips as well as mixing video with audio. It was also
used for encoding to proper video formats.

In the early stages of the project, most of the effort was placed on studying proper
literature and sources on the Internet because prior knowledge in shell programming
was little. Information gathering also included conceiving the time-lapse functionality
and collecting images. Eventually this was rather having resources for the program than
becoming a major stage in this project. As opposed to this, code development and testing
was most time-consuming and played the main role. Especially validating user input
contained big effort. The process for the application development also considered the
functionality on different UNIX-like systems1 as Mac OS X. Obtaining feedback was
the last step in development and testing, to apply the final corrections like fixing bugs
and improving the usage. User involvement was also essential to ensure error robustness.
The last week in the time interval of the project was scheduled for the presentation. It
included the final report, website and time-lapse demo movie as well as the release of the

1http://en.wikipedia.org/wiki/Unix_like

6

http://en.wikipedia.org/wiki/Unix_like

3 Methodology

final product - the time-lapse script. Used material was self-created or freely available.
Web pages like Flickr or ccMixter offer a lot of material which include an appropriate
creative commons license. Therefore my outputs are also contributed under a creative
commons license2.

It should be noted, that the different stages were not necessarily followed in strict order.
Especially code development was in progress during the whole period. Compared to
the schedule, which was made in the proposal, it was at last not manageable to satisfy
the time frame for the particular tasks. But that issue was expected before and is not
considered as failure.

2http://creativecommons.org/licenses/by-nc-sa/2.0/

7

http://creativecommons.org/licenses/by-nc-sa/2.0/

4 Implementation

First of all the planning involved breaking down each work package into separate activities
to make it easier to estimate the process. Time was short and needed to be well-conceived.
The following weeks were focused in collecting images and code development. Information
gathering in shell script programming proceeded simultaneously.

4.1 First shitty draft

Before starting and testing the workflow, some footage was needed, so I decided to take
pictures over a period of time. Afterwards I was able to create the first time-lapse movies.
It needed only a few lines to realize it. Setting path of image sequence, resizing images
with ImageMagick to desired size and merging them together to one single movie with
FFmpeg. At this point, there was no menu prompt, therefore it was full automatic.
Compared with the goals, it still needed a lot of improvement.

Listing 4.1: collecting and resizing images + merging them to one single movie
1 $directory="image_sequence"
2 # get all jpg-files in current directory
3 files=$(ls -1 $directory | grep -i ’[.]jpe\?g$’)
4 size="640x480"
5 # resize all images to declared size, copy them to directory "resized_images"
6 # and rename them to img001.jpg, img002.jpg, etc.
7 for fname in $files
8 do
9 index=$((index+1))

10 convert -sample $size^ -crop $size+0+0 -gravity "center" \
11 "${directory}/${fname}" ‘printf "resized_images/img%03d.jpg" $index‘
12 done
13 # merge image to one single movie; doc: http://ffmpeg.org/ffmpeg-doc.html#SEC9
14 ffmpeg -r 30 -f image2 -i "resized_images/img%03d.jpg" \
15 -r 30 -qscale 2 -s vga -vcodec mpeg2video "timelapse_movie.mpg"

1 2

1ImageMagick resize operator: http://www.imagemagick.org/Usage/resize/
2FFmpeg image sequence to movie: http://ffmpeg.org/faq.html#SEC14

8

http://www.imagemagick.org/Usage/resize/
http://ffmpeg.org/faq.html#SEC14

4 Implementation

4.2 User involvement

Users should be able to set the image path individually. Furthermore they might choose
between several video formats. There should also be a possibility to merge several
timelapse scenes. Before this stage, you could create only one clip and the process was
finished. That’s why a file structure was implemented so it is possible, to create a new
project, or to continue the old one. Continuing means, you can create more clips within
the current project and finally merge them to one single movie. Moreover this part
included a lot of validation for the different given inputs.

Listing 4.2: create a new project by valid user input
1 # create new project directory by given input after checking
2 # if name is valid and available
3 while :
4 do
5 validateName # go to method "validateName"
6 path_project="${HOME}/${name}";
7 if [-d "${path_project}/clip001"]; then
8 echo -e " invalid : this project already exists"
9 else

10 mkdir -p -v "${path_project}" # create project folder
11 fi
12 done
13 validateName() {
14 while :
15 do
16 read name # waiting for given input
17 # strip whitespaces from beginning and end
18 name=‘expr "$name" : ’[[:space:]]*\(.*\)[[:space:]]*$’‘
19 # not more than one whitespace between the words
20 name=$(echo ${name} | tr -s " ")
21 case $name in
22 .*) echo -e " invalid : no points at beginning\n" ;;
23 /*|*/|*//*) echo -e " invalid : slashes\n" ;;
24 *[^a-zA-Z0-9-_.,/[:space:]]*) \
25 echo -e " invalid : name includes special character\n" ;;
26 *) break ;;
27 esac
28 done
29 }

3

3Regular expressions: http://tldp.org/LDP/Bash-Beginners-Guide/html/chap_04.html

9

http://tldp.org/LDP/Bash-Beginners-Guide/html/chap_04.html

4 Implementation

4.3 Features

Actually the workflow could be finished now. You can specify your image path, create
your project or continue your old project and choose your video format. The script will
resize the images, merge them to a single clip and even merge all clips to one single
movie if wished. But I wanted to provide some features for the clip and the final movie.
You have to differentiate between clip- and movie additions. Fade-in, fade-out and an
individual location stamp can only be employed on clips. Adding metadata (which is
performed by Exiftool), background music and credits are just possible for your final
movie as well as choosing the final video settings (e.g. Youtube, Iphone, etc.). There is a
reason for splitting the features in clip options and movie options. Fader wouldn’t be
possible between the scenes if you have this means just for your final movie. Location
stamp can be added for each time-lapse clip instead only once. On the other side, you
have to think oppositely for the movie options. These features make sense when you
apply them not more than once.

Listing 4.3: code snippet for one of the movie options (background music)
1 # add background music to your movie by given user input
2 # http://ffmpeg.org/ffmpeg-doc.html#SEC11
3 audio_settings="-vol 80 -acodec libmp3lame -ac 2 -ab 160k"
4 while :
5 do
6 echo -e " file name: \c"
7 read music # waiting for user input
8 # returns 1 if input is audio file
9 check_audio=‘file "$music" | grep -c -i ’Audio’‘

10 if [$check_audio -eq 1]; then
11 # mixing audio and video together and finish encoding
12 # when the shortest input stream ends.
13 ffmpeg -shortest -i "${path_project}/movie.mpg" -vcodec copy \
14 -i "$music" $audio_settings "${path_project}/movie_sound.mpg"
15 rm "${path_project}/movie.mpg"
16 mv "${path_project}/movie_sound.mpg" "${path_project}/${movie}"
17 else
18 echo " couldn’t find the audio file / file wasn’t a valid audio file"
19 echo -e " try again? [y,n]: \c"
20 read confirm; echo ""; [[$confirm != "y"]] && break
21 fi
22 done

4

4FFmpeg resize operator: http://www.imagemagick.org/Usage/resize/

10

http://www.imagemagick.org/Usage/resize/

4 Implementation

For the advanced user I specified a couple of constants. You can modify the available
video settings, fade color, label- and credits settings, etc. . You are also free to change
the default ranges for the frame rate, image amount and name length.

Listing 4.4: extract of changeable values for the advanced user
1 # some listed examples for constants,
2 # which should only be changed by advanced users
3

4 min_amount=60; max_amount=600 # min and max image amount
5 min_name=3; max_name=50 # min and max length of project name
6

7 # video settings
8 VIDEO_SETTINGS_HD1080="-r 30 -qscale 2 -s hd1080 -vcodec mpeg2video"
9 VIDEO_SETTINGS_DVD="-target pal-dvd"

10 VIDEO_SETTINGS_MOBILE="-r 30 -qscale 2 -s 480x320 -vcodec mpeg2video"
11

12 # only for final movie
13 VIDEO_SETTINGS_YOUTUBE_HD="-s hd720 -b 2000k -vcodec mpeg4"
14 VIDEO_SETTINGS_FLV="-ar 22050 -acodec libmp3lame -ab 32K -r 30 -s 320x240

-vcodec flv"
15 VIDEO_SETTINGS_XVID="-vcodec libxvid -qscale 3"
16

17 # http://www.imagemagick.org/script/color.php
18 fade_color="#000000"
19

20 # label settings
21 label_maxChar=50 # max length for label
22 label_textColor="#EEEEEE"
23 label_backgroundColor="#111111"
24 label_backgroundOpacity=75 # 100=opaque, 0=transparent

Guidelines were implemented for every input to make it as easy as possible to use. To
maintain this quality the workflow is divided in several steps which are all well-explained.
The program will also check at the beginning, if all necessary tools are installed.

To get a better overview about the different program stages and how it is constructed,
see A.1

11

4 Implementation

4.4 Issues

The main problems and issues during the implementation were especially the validation
of user input and the development of additional features. When you have no GUI based
tool, the user is principally able to type in whatever he wants. But directories can’t
contain any desired character and empty folders for the image path are not really helpful.
You have to ensure, the program will not crash, no matter what the user is entering on
the prompt. Error messages for explaining why the input is invalid, are also quite helpful.
Adding Metadata was only succesful, when the final video format was an AVI file. I got
no error for other file formats, but metadata wasn’t visible then.

FFmpeg is powerful - and sometimes hard to understand. Especially if you want to use
contained video filters, which was eventually not manageable for me. Tutorials in this
field are rare and if you find one, it’s obviously not working anymore concerning your
updated FFmpeg version. Because of that, I needed to implement some of these features
in ImageMagick which is rather slow in video processing5.

The suggestion, to take pictures by GPS-enabled camera with remote control gadget
and tripod was canceled regarding several reasons. These cameras are inventory of the
university and can be borrowed by considering the related schedule. That meant a limited
flexibility which is quite inconvenient for getting time-lapse footage. Weather conditions
change fast, especially in November. Therefore I needed to be more spontaneous in taking
pictures and decided to borrow the camera from Martin Olsen, a Master student at
Gjøvik University. This camera, a Canon 450D, is not able to take GPS-tagged pictures
without any external gadget. However providing a workflow which is not dependent
on GPS-data, admits the usage for more users, even if they haven’t cameras with this
functionality. For remote control I used my laptop and the software DSL Remote Pro6

as trial.

5ImageMagick video handling: http://www.imagemagick.org/Usage/video/
6http://www.breezesys.com/DSLRRemotePro/

12

http://www.imagemagick.org/Usage/video/
http://www.breezesys.com/DSLRRemotePro/

5 Outputs and Results

The project output comprise a workflow to enable users to create time lapse clips,
modifying and merging them to one single movie which can include background music,
credits and metadata. Everything is based on open source command line tools and
requires a UNIX-like system. All resources, including shell script, project plan and final
report, can be found on my project web page

5.1 Process

The output can be divided in two main parts.
The first part is to create and adapt the clip. Here you need your image sequence. It
also determines the video size for all following clips in the current project and provides
the different features. This part is actually not dependent on part 2, which means, you
already have a time-lapse movie without a need to apply the second part.
Part two is especially for connecting different time-lapse scenes as a whole. That also
included background music, credits and metadata as optional features. Besides you can
change your video format. Contrary to part 1 it is dependent. There already has to be a
project and at least one clip inside to run this part.
The Documentation associated with the workflow can be found in the script itself. The
manual is not realized as single document, but integrated in the workflow. By doing
this, the user is able to look up the explanations during the process without switching
between workflow and manual.
Screenshots from the workflow can be found in B.3

5.2 Finding

Automation in this workflow is interrupted periodically because of needed user input.
That means, it is not possible to execute the script, wait for a while and get the final
result. That’s not how it works and it wasn’t the purpose as well. Resizing images,
applying effects, merging and adding data - that is still going to happen automatically,
but it always needs some sort of confirmation before.

13

6 Conclusions

6.1 Differences

On the scale of things the end result doesn’t much differ to the plan. As stated in section
2.2, it’s a matter of opinion if some of the goals and objectives failed. It is still for
free (open source command line tools), it works on Mac OS X as well as on Ubuntu
(portability), partly it is more efficient than common video software (automation) and
the focus has been on the essential elements during the whole development (merging,
mixing, transforming).

6.2 Problems

However, this workflow might have one handicap - that’s ImageMagick, which is a great
tool, as long as you use it for single or just a few images. It’s not very suitable, if you
need to transform a large amount of images. The GUI based Tool IrfanView1 is also able
to do batch processing. I claim, there is no advantage in speed when I use the command
line tool ImageMagick. As already mentioned in section 2.2, Ffmpeg is fortunately able
to equalize this disadvantage in performance.
Nevertheless, the time-lapse workflow has succeeded in producing time-lapse movies easily
and for free. It’s no longer necessary, to have commercial software for this task.
For bigger projects such as cutting videos including transitions or multi-track audio
editing I wouldn’t recommend it, but for small tasks like time-lapse videos it’s advisable,
although it might be uncommon to edit your videos on the command line most likely.

6.3 Future Work

The impact of this tool may be small, but potential exists. Users who already tested the
script were satisfied. It’s easy to handle, and if you background knowledge in program-
ming, also easy to modify.

1http://www.irfanview.de/

14

http://www.irfanview.de/

6 Conclusions

Even though it was a nice experience to work on a command line interface, I would still
recommend a GUI for this workflow. I spent much time on validating user input, more
than on purpose. That’s also one of the main causes why this script is eventually larger
than expected. If you have a GUI based workflow, you don’t need most of this validation.
User input is limited from the beginning. Wrong characters or ignoring the range isn’t
even possible. Aside from that, most users prefer to browse to the requested directory,
which is not possible on a CLI. An ideal solution might be using the GUI for usability
advantage and the CLI for automation advantage. My first approach was a sort of shell
script GUI. Corresponding utilities like dialog2 and zenity3 allows you to create menus
or lists.

Additional work in the future could be the implementation of further features (e.g.
location stamp based on GPS data, sort of connection to Google Maps, etc.). I would
also suggest, to find a better alternative than ImageMagick, to apply the appropriate
effects. FFmpeg is obviously able to adopt this part4. Unfortunately the documentation
for it is missing or hard to follow.

2http://linuxgazette.net/101/sunil.html
3http://bashcurescancer.com/man/cmd/zenity
4http://article.gmane.org/gmane.comp.video.ffmpeg.devel/85981

15

http://linuxgazette.net/101/sunil.html
http://bashcurescancer.com/man/cmd/zenity
http://article.gmane.org/gmane.comp.video.ffmpeg.devel/85981

7 Recommendations

Before getting started you need to make some arrangements. There are a few things
which you should consider.

Equipment:
A camera with timelapse functionality is essential. You have to ensure, your camera can
be programmed to automatically shoot a number of frames over a period of time or with
a certain time interval between each frame. Some cameras feature a built-in time lapse
mode. Others allow you to set up time lapse as part of a Remote Capture application.
This requires the camera to be connected to a computer1. A tripod is also advisable

Camera settings:
Use applicable settings for your timelapse shooting. That includes proper shutter speed,
exposure time, etc. hypertargettutTutorials for time-lapse shooting exist in great quanti-
ties.

Software:
You need an UNIX-like system or at least Cygwin2 for Windows. Required tools for this
workflow are Ffmpeg, Exiftool and ImageMagick. You can install the tools manually or
just start the script install_tl_tools.sh (recommended).

This tool can’t perform miracles. If you have poor footage, you can’t expect a nice
looking time-lapse movie. It took me a while until i figured out, how to make suitable
time-lapse scenes. Therefore you also need to be able to have patience. The problem isn’t
the creation of the movie, it’s more the interaction between camera settings, weather
conditions and your own talent in photographing.

1http://www.dpreview.com/learn/?/Glossary/Exposure/Time_Lapse_01.htm
2http://www.cygwin.com/

16

http://www.dpreview.com/learn/?/Glossary/Exposure/Time_Lapse_01.htm

8 References

Project output (script, demo movie, material, reports):
http://www.stud.hig.no/~091328/timelapse/

External tools

• Exiftool: http://owl.phy.queensu.ca/~phil/exiftool/exiftool_pod.html

• ImageMagick: http://www.imagemagick.org/script/command-line-tools.php

• FFmpeg: http://ffmpeg.org/ffmpeg-doc.html

Time-lapse tutorial:
http://digitalartwork.net/2007/01/30/time-lapse-tutorial/

Material under creative commons license

• Images: http://www.flickr.com/creativecommons/

• Sound: http://ccmixter.org/

17

http://www.stud.hig.no/~091328/timelapse/
http://owl.phy.queensu.ca/~phil/exiftool/exiftool_pod.html
http://www.imagemagick.org/script/command-line-tools.php
http://ffmpeg.org/ffmpeg-doc.html
http://digitalartwork.net/2007/01/30/time-lapse-tutorial/
http://www.flickr.com/creativecommons/
http://ccmixter.org/

A Workflow structure

Fig. A.1: Process in time-lapse workflow

18

B Workflow screenshots

Fig. B.1: Step 1: path of image sequence

Fig. B.2: Step 3: create new project

19

B Workflow screenshots

Fig. B.3: Step 7: clip options

Fig. B.4: Step 9: final video format

20

	1 Background
	2 Goals and Objectives
	2.1 Review
	2.2 Changes

	3 Methodology
	3.1 Overall Approach
	3.2 Detail

	4 Implementation
	4.1 First shitty draft
	4.2 User involvement
	4.3 Features
	4.4 Issues

	5 Outputs and Results
	5.1 Process
	5.2 Finding

	6 Conclusions
	6.1 Differences
	6.2 Problems
	6.3 Future Work

	7 Recommendations
	8 References
	A Workflow structure
	B Workflow screenshots

