
Media Addressing Through the Spatial Domain

KML & KMZ Generator

Pelle Bjerkestrand

Abstract

This report documents the product and process outlined in the pre-project re-
port1. It will not include the full pre-project report1, but I recommend reading
it first as I will quote and reference it where appropriate.

The implementation chapter (1) will focus on the code and show examples
of the scripts themselves, while the documentation chapter (2) will contain a
non-technical overview of the process and a user guide.

Alongside this report there should be a set of scripts, a KMZ2 file and several
images. These files are also available at the project site3.

Both reports and all code are under a Creative Commons BY-NC-SA license4.

Chapter 1

Implementation

1.1 Introduction

A goal for this project was to use nothing more than standard Bourne-Again
shell5 scripting. Handling KML6 can be done without dependencies, but using
metadata and processing the images themselves requires dependencies. This
will be outlined further under 1.3 and 1.4.

The final implementation exists as a set of Bourne-Again shell5 scripts:

• append.sh

• endkml.sh

• engage.sh

• gpsfixfile.sh

• gpsfixfolder.sh

• makeimages.sh

• makekml.sh

• sortbyloc.sh

• startkml.sh

These scripts will not be quoted in their entirety, as they are published in full
on the project website3.

1

1.2 Collecting

Finding old images of Gjøvik was done by searching for ”gjøvik” at the The
National Library of Norway’s photo archive10 and browsing Mjøsmuseet’s photo
collection11. The images downloaded from these sources had metadata that can
at best be categorized as sparse.

Tag Value
File Size 45 kB
File Modification Date/Time 2009:11:27 14:52:42+01:00
File Type JPEG
MIME Type image/jpeg
JFIF Version 1.01
Resolution Unit None
X Resolution 1
Y Resolution 1
Image Width 633
Image Height 480
Encoding Process Baseline DCT, Huffman coding
Bits Per Sample 8
Color Components 3
Y Cb Cr Sub Sampling YCbCr4:2:0 (2 2)
Image Size 633x480

As we see from the metadata, it is composed only of technical data relating
to the scanned file. At the very least, for an image to be usable in the context
of this project, metadata about the location captured in the image is needed.

Capturing new images was done using a Nikon D300012 equipped with a
GP-113 GPS receiver. The GP-1 did unfortunately not work with the D3000,
so I resorted to taking pictures with my iPhone14 and copying the location
metadata from those pictures over to the ones taken with the D3000 as well as
the old ones acquired from The National Library of Norway’s photo archive10

and Mjøsmuseet’s photo collection11. How this was handled is documented in
1.3.

2

Figure 1.1: Trying to figure out why the GP-1 wasn’t working

Figure 1.2: Collecting images

3

1.3 Describing

As Exif metadata needed to be read and written, ExifTool7 was chosen as a
way to do this. As described in 1.2, both the old and new images needed GPS
data added. Scripting this seemed to be a good solution since there were many
images. Two scripts were written for this purpose:

gpsfixfile.sh
exiftool \
-overwrite original \
-exif:gpslatitude=”$(exiftool -gpslatitude -T -n ”$1”)” \
-exif:gpslongitude=”$(exiftool -gpslongitude -T -n ”$1”)” \
$2

gpsfixfolder.sh
ORIGINAL PATH=$(pwd)
cd ”$(dirname $0)”
SCRIPT PATH=$(pwd)
cd ”$ORIGINAL PATH”
cd ”$1”
FROM FOLDER=$(pwd)
cd ”$ORIGINAL PATH”
cd ”$2”
TO FOLDER=$(pwd)

IFS=$’\n’

for image in $(ls -p -1 ”$FROM FOLDER” |grep -v ”/”)
do

. ”$SCRIPT PATH”/gpsfixfile.sh \
”$FROM FOLDER/$image” \
”$TO FOLDER/$image”

done

IFS=”$OLD IFS”

As is clear from these scripts, they only work if the source and destination
files have the same name. Working with larger data sets, another solution would
have been developed, but with the limited number of images I was dealing with,
renaming them wasn’t a problem. As mentioned in the pre-project report1

the project notes call for ”a group of well described files”, so these scripts are
included as documentation more than as a part of the product proper.

Filling the artist, datetimeoriginal and copyright tags was done manually with
ExifTool7 since the values for these were not the same for any two images.

4

1.4 Transforming

1.4.1 Image Processing

Further into the implementation phase, I also wanted the creation of thumbnails
and web versions of the original images to be a part of the automatic workflow.
This would require another dependency. The existing scripts were not modified
so that they could still be used if one already had a set of suitable images.
Instead, a new script that generated thumbnails and web versions of images
using ImageMagick8 was created.

From makeimages.sh
OLD IFS=”$IFS”
IFS=$’\n’

for image in $(ls -p -1 ”$IMAGE PATH” |grep -v ”/”)
do

$(convert ”$IMAGE PATH/$image” \
-format jpg -quality 75 -resize 290x240\> \
-gravity center -crop 300x250+0+0\! \
-background black -flatten ”$PARENT PATH/thumbs/$image”)
wait

done

IFS=”$OLD IFS”

echo -e ”\t- web versions”
cd ”$IMAGE PATH”
$(mogrify -format jpg -quality 90 \

-path ”$PARENT PATH/web” -resize 1280x1280\> *.*)
wait
cd ”$SCRIPT PATH”

This script posed some challenges. At first mogrify with -thumbnail was
used to generate thumbnails, but this had to be abandoned due to the fact that
-thumbnail strips all metadata in order to make the file size smaller. In order
to get the look I wanted (fixed size black backdrop), a move from using mogrify
to convert was needed since mogrify does not support the full range of options
the script would be using.

In addition to the thumbnails I also decided to generate images suitable for
web use. These would need to be relatively small both in file size and resolution
to fit comfortably in user’s connections and on their screens. For these reasons,
JPGs with a size restriction of 1280 in both dimensions were deemed suitable
and chosen.

5

Figure 1.3: Thumbnails with black backdrop

The thumbnails produced end up at 16-61 kilobytes (1.7-6.7 bits per pixel)
while the web versions are 200-500 kilobytes (1.5-3.7 bits per pixel). I find this
more than acceptable, even for large sets of images, considering that raw image
files are usually at 12 or 14 bits per pixel15.

6

1.4.2 KML and KMZ Creation

My view on whether to use a KML that references external media or a self
contained KMZ is that one should use a self contained KMZ where it is practical.
For this project, that means that the KMZ contains the thumbnail images, but
not the web versions as that could make the archive quite large. Doing it
this way allows the KMZ to be distributed and accessed without the need for
dependencies. The thumbnails can even be browsed locally and while offline.

The act of making a KMZ is as simple as making a KML and archiving it
and its dependencies in a standard ZIP file with a KMZ extension.

From startkml.sh
echo -e ”<?xml version=\”1.0\” encoding=\”UTF-8\”?>
<kml xmlns=\”http://www.opengis.net/kml/2.2\”

xmlns:gx=\”http://www.google.com/kml/ext/2.2\”>” >> ”$1”

From endkml.sh
echo ”</kml>” >> ”$1”

What’s interesting is what happens between startkml.sh and endkml.sh.

From makekml.sh
echo -e ”\t- sorting images by location”
. ”$SCRIPT PATH”/sortbyloc.sh ”$IMAGE PATH” &
wait

echo -e ”\t- adding images to \”$1.kml\””
(

IFS=$’\n’
for dir in $IMAGE PATH/*
do

if [-d ”$dir”]
then

. ”$SCRIPT PATH”/append.sh \
”$dir” ”$PARENT PATH/$1”.kml ”$3” &
wait

fi
wait
done

)

First, sortbyloc.sh is run so that all images are sorted into folders based
on location. Second, these folders are passed to append.sh which appends each
image in the folder to the KML file. Being over 100 lines of code, I won’t quote
append.sh here, but what it does is:

7

• Extract location data, in the form of latitude and longitude, from the
folder name

• Figure out the relative path from the KML to the images

• Check for the tags ImageDescription, XPTitle and DocumentName so a
title can be made

• Extract other specified tags

It then injects this data as valid HTML and KML into the KML file.

Figure 1.4: HTML output structure

Further, the KML and its dependencies is archived in a standard ZIP file
with a KMZ extension.

From makekml.sh
cd ”$PARENT PATH”

echo -e ”\t- making \”$1.kmz\””
zip -q ”$1”.kmz ”$1”.kml
wait

echo -e ”\t- adding images to \”$1.kmz\””
zip -q -g -r ”$1”.kmz ”$IMAGE PATH R”
wait

When the operation is complete there will be a KML file, a KMZ archive,
a folder of web images and a folder of thumbnails located next to the specified
input folder, ready for distribution and use.

8

1.5 Presenting

Presenting the generated KMZ2 can be done by referencing its location in the
Google Maps9 search field. The file has to be reachable over standard HTTP
for this to work, but can be located anywhere.

Figure 1.5: Presenting a KMZ2 in Google Maps9

9

1.6 Automating

Here I will provide an overview of the automated workflow as it exists in the
scripts. This will be done in a fashion as to, as clearly as possible, explain which
scripts do what jobs.

To facilitate launching the script from any folder and specifying both absolute
and relative paths, engage.sh includes code that makes, and saves in constants,
all absolute paths needed. makeimages.sh and makekml.sh both include varia-
tions of this code so that they can be run independently of engage.sh and each
other.

From engage.sh, makeimages.sh and makekml.sh
ORIGINAL PATH=$(pwd)
cd ”$(dirname $0)”
SCRIPT PATH=$(pwd)
cd ”$ORIGINAL PATH”
cd ”$2”
IMAGE PATH=$(pwd)
cd ..
PARENT PATH=$(pwd)
cd ”$SCRIPT PATH”

1.6.1 engage.sh and makeimages.sh

The engage.sh script is a launcher that starts the workflow. It takes two or
three arguments: desired KML and KMZ file name, source image folder and
optionally a web URL where the linked to images are located. After this it
calls makeimages.sh. What makeimages.sh does and how it does it is shown
in 1.4.1.

10

1.6.2 sortbyloc.sh

Further, sortbyloc.sh is called with the IMAGE PATH as the only argument.

From sortbyloc.sh
(

IFS=$’\n’

for file in $(ls -p -1 ”$1” | grep -v ”/”)
do

location=”$(exiftool -gpslongitude -T -n ”$1/$file”) \
$(exiftool -gpslatitude -T -n ”$1/$file”)”

if [! -d ”$1/$location”]
then

$(mkdir ”$1/$location”)
wait

fi

$(mv ”$1/$file” ”$1/$location/$file”)
wait

done
)

This loops through all files in the folder given as an argument and checks
to see if there exists a folder that is named the GPS location of the file being
processed. If a folder does not exists, one is created and the file is moved into
this folder. If the folder exists, the file is just moved. append.sh parses these
folder names to determine the location of the images inside. This is done to
reduce calls to ExifTool7.

11

1.6.3 makekml.sh

After sortbyloc.sh, engage.sh calls makekml.sh with either two or three ar-
guments depending on whether an external URL was specified or not. The name
in engage.sh’s first argument is passed as the first argument to makekml.sh,
the newly created thumbs folder’s location as the second argument and option-
ally the external URL as the third. What makekml.sh does and how it does it
is shown in 1.4.2.

In order to properly reference files in a KMZ, makekml.sh needs to know the
path of the thumbnails relative to the KML. The solution to this is the following
bit of code.

From makekml.sh
OLD IFS=”$IFS”
IFS=”/”
ARR=($IMAGE PATH)
IFS=$OLD IFS
IMAGE PATH R=”$ARR[$#ARR[@]-1]”

cd ”$PARENT PATH”

This makes an array out of IMAGE PATH with / set as the delimiter, making
each folder name an entry in the array. It then saves the last entry of the array
(the array’s length minus one) as the new variable IMAGE PATH R which can
now be used to reference images from the KML inside the KMZ. The script is
already running in PARENT PATH before this piece of code executes and keeps
running in it afterwards as to be able to correctly add the thumbnail images,
using IMAGE PATH R, when making the KMZ.

From makekml.sh
echo -e ”\t- adding images to \”$1.kmz\””
zip -q -g -r ”$1”.kmz ”$IMAGE PATH R”
wait

12

1.6.4 gpsfixfolder.sh and gpsfixfile.sh

These two scripts were used to facilitate the transfer of GPS coordinates from
one image to another and were written as a helpful tool during the implementa-
tion process, not as a part of the final product, and are therefore rather simple.

From gpsfixfolder.sh
ORIGINAL PATH=$(pwd)
cd ”$(dirname $0)”
SCRIPT PATH=$(pwd)
cd ”$ORIGINAL PATH”
cd ”$1” FROM FOLDER=$(pwd)
cd ”$ORIGINAL PATH”
cd ”$2”
TO FOLDER=$(pwd)

IFS=$’\n’

for image in $(ls -p -1 ”$FROM FOLDER” | grep -v ”/”)
do

. ”$SCRIPT PATH”/gpsfixfile.sh \
”$FROM FOLDER/$image” ”$TO FOLDER/$image”

done

IFS=”$OLD IFS”

gpsfixfolder.sh is really just a generic script that runs through all items
in a folder that are not folders themselves. In this case it passes FROM FOLDER
and TO FOLDER as arguments to gpsfixfile.sh, but this can be substituted by
any other procedure.

From gpsfixfile.sh
exiftool \
-overwrite original \
-exif:gpslatitude=”$(exiftool -gpslatitude -T -n ”$1”)” \
-exif:gpslongitude=”$(exiftool -gpslongitude -T -n ”$1”)” \
$2

We see here that gpsfixfile.sh really is the script that does all the work
on the files.

13

Chapter 2

Documentation

2.1 Planning

Planning a small one man project is not easy, in that there is no-one to answer
to except yourself. For this project there was only one external factor: the
delivery date. Nevertheless, I have managed to stick to the schedule set forth
in the pre-project report1.

Figure 2.1: Gantt diagram from the pre-project report

Though there have been some anomalies, like spending more than the 30
hours I viewed as ”fair” for the project and documenting changes/milestones
on the website3, there now exists a usable implementation of KML and KMZ
generation from a set of unordered, but well described, images.

2.1.1 Research Questions

The research questions I chose to pursue were the following:

1. How much of the workflow of creation and publishing KML and dependent
files can be automated using only standard UNIX shell scripting?

2. Is fully automating the workflow justifiable with regards to computing
time and performance versus doing some steps manually?

Answers to these will be explored in the conclusion (2.4).

14

2.2 Implementation

As I viewed scripting as the most critical part of the project, writing the scripts
to automate the workflow was done before collecting, describing and transform-
ing any of the images related to this project. Images from my private library
served as dummy images until I was confident enough to leave scripting alone
and go outside to collect images of Gjøvik.

Considering that this project is relatively small and that I would be working
on it on my own, I resorted to cowboy code16 the whole implementation. This
allowed me to focus on the task at hand rather than figure out how to adhere
to the specifications of a chosen development methodology.

As with most of my solo projects, less time was spent figuring out the technical
aspects of the workflow while more time was spent debugging and tweaking.

2.3 End product

The end product consists of a multitude of scripts, but only engage.sh needs
to be run in order to generate a complete and working KMZ. This script takes
three arguments:

1. The name desired for the KML and KMZ

2. The folder of images

3. A valid and reachable URL where the web versions will reside

Argument two, the path to the folder of images, can be either relative or
absolute. Argument three, the URL, is optional. If left out, the thumbnails
included in the KMZ will not be clickable links.

The script will produce appropriate output while it is running.

15

Example output
Making images

- thumbnails
- web versions

Done
Making KML & KMZ

- creating gjovik.kml
- sorting images by location
- adding images to ”gjovik.kml”
- adding ”Hunn G̊ard”
- adding ”Gjøvik Skole”
- adding ”Storgata”
- adding ”Gjøvik Arbeidersamfunn”
- adding ”Panorama fra Keglebarhaugen”
- adding ”Storgata”
- adding ”Gjøvik G̊ard”
- adding ”Marcusseng̊arden”
- adding ”Kauffeldtg̊arden”
- adding ”Bensinstasjon”
- adding ”Stasjonen”
- adding ”Fredevik”
- closing ”gjovik.kml”
- making ”gjovik.kmz”
- adding images to ”gjovik.kmz”

Done

2.3.1 Only generating images

If it is of interest to only generate thumbnails and web versions of a set of images,
this can be done using makimages.sh. This script only takes on argument: a
path to a folder of images. It will the generate and fill the folders ”thumbs” and
”web” next to the original image folder.

2.3.2 Only generating KML and KMZ

Like makeimages.sh, makekml.sh can also be run on its own taking the same
three arguments as engage.sh (name, image folder, external URL). Note that
the images located in the specified image folder are the images that will be the
ones referenced in the KML and included in the KMZ, and will not be processed
in any way.

16

2.4 Conclusion

2.4.1 Process

Although I am used to, and prefer, working as part of a team, I feel that working
alone did not hinder the process on this particular project. I attribute this so
cowboy coding16 the implementation and then moving my focus over to fixing
bugs and making it more user friendly.

Following a plan outlining periods with planning, implementation and then
documentation was a challenge, as I am used to spending the vast majority
of time implementing things using an agile development methodology relying
on user stories and multiple smaller deliveries. Looking back on the informal
progress log I kept for myself17, I see that I can loosely divide the implementation
process into what felt like iterations:

• KML and KMZ creation for single images

• KML and KMZ creation for multiple images

• Collecting and describing images

• Image processing

• Combining image processing and KML and KMZ creation

Going about the implementation in a familiar manner like this helped me
keep focused and kept me from growing tired. I also view the development of
the project website3 as part of the final product, but coding it was something I
used as breaks between coding the actual scripts.

2.4.2 Research Questions

How much of the workflow of creation and publishing KML and
dependent files can be automated using only standard UNIX shell
scripting?

The creation of the KML itself is done with standard BASH5 using echo and
redirecting its output to a file (>>). The other facets of KML and KMZ pro-
duction rely on external programs such as ExifTool7 and ImageMagick8.

A complete workflow can therefore not be automated using only standard
UNIX shell scripting.

A complete workflow can, however, be automated using only standard UNIX
shell scripting if one allows for external dependencies.

17

Is fully automating the workflow justifiable with regards to computing
time and performance versus doing some steps manually?

The full workflow using all 24 test images takes roughly 50 seconds to complete.
That’s about two seconds per image. Manually opening, resizing to web version
metrics and saving one image using a popular image manipulation program20

took me 35 seconds. This translates into 14 minutes for all 24 images and this
is only resizing to web version metrics.

Fully automating the workflow, as can be observed by using engage.sh, is
therefore justifiable to a large degree.

2.4.3 Product

The product itself differs from what was, in the pre-project report1, put forth
as an example.

• KML generator with a cron job

– Check drop box/input folder for new images

– Move new images to another folder

– Manipulate images so that they are suitable for web use

– Append data to KML file

∗ HTML templates with search and replace

We see that watching a folder where images would be dropped and then
processing and appending them to an existing KML file was presented. Actually
implementing this would require several other external dependencies:

• A command line XML parser19, as standard BASH5 does not provide tools
for quickly and easily traversing and modifying XML

• Cron18, or similar, to enable running a script that watches a folder

• A method for quick and reliable search and replace

With the implementation the way it is now, it makes static files and does not
update them, but also only has two dependencies (ExifTool7 and ImageMag-
ick8) and no need for configuration. I view this simplicity of use and portability
as a worthy tradeoff for expanded functionality. Actually implementing the full
functionality of the example would have been considered if I had felt that the
final product would be user friendly enough, and codable in the short imple-
mentation time given.

18

2.4.4 Suggested future work

As I would like to see this script mature to include the features put forth in the
example above, actually implementing these features is a logical suggestion for
future work. Using this script as a base to start work on addressing of temporal
media through the spatial domain, as described in the pre-project report1, is
also a possibility.

Figure 2.2: Addressing temporal media. Example from the pre-project report

19

Notes
1http://pellebjerkestrand.net/school/imt4951/kml/assets/pre-project_report_bjerkestrand_

091217.pdf
2http://code.google.com/apis/kml/documentation/kmzarchives.html
3http://pellebjerkestrand.net/school/imt4951/kml/
4http://creativecommons.org/licenses/by-nc-sa/3.0/
5http://www.gnu.org/software/bash/
6http://code.google.com/apis/kml/
7http://www.sno.phy.queensu.ca/~phil/exiftool/
8http://www.imagemagick.org/
9http://maps.google.com/

10http://www.nb.no/gallerinor/e_sok.php
11http://www.gjovikmuseet.no/index.php?action=fotos¶m=display
12http://imaging.nikon.com/products/imaging/lineup/digitalcamera/slr/d3000/
13http://www.nikonusa.com/Find-Your-Nikon/Product/Miscellaneous/25396/GP-1-GPS-Unit.

html
14http://www.apple.com/iphone/
15http://en.wikipedia.org/wiki/Raw_image_format
16http://en.wikipedia.org/wiki/Cowboy_coding
17http://pellebjerkestrand.net/school/imt4951/kml/progress.html
18http://en.wikipedia.org/wiki/Cron
19http://xmlstar.sourceforge.net/
20http://www.pixelmator.com/

20

