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Abstract: Study of various color difference formulas by the
Riemannian approach is useful. By this approach, it is pos-
sible to evaluate the performance of various color differ-
ence formulas having different color spaces for measuring
visual color difference. In this article, the authors present
mathematical formulations of CIELAB (DE�

ab), CIELUV
(DE�

uv), OSA-UCS (DEE) and infinitesimal approximation
of CIEDE2000 (DE00) as Riemannian metric tensors in a
color space. It is shown how such metrics are transformed
in other color spaces by means of Jacobian matrices. The
coefficients of such metrics give equi-distance ellipsoids in
three dimensions and ellipses in two dimensions. A method
is also proposed for comparing the similarity between a
pair of ellipses. The technique works by calculating the ra-
tio of the area of intersection and the area of union of a
pair of ellipses. The performance of these four color diffe-
rence formulas is evaluated by comparing computed ellip-
ses with experimentally observed ellipses in the xy chroma-
ticity diagram. The result shows that there is no significant
difference between the Riemannized DE00 and the DEE at
small color difference, but they are both notably
better than DE�

ab and DE�
uv. � 2011 Wiley Periodicals, Inc. Col

Res Appl, 37, 429 – 440, 2012; Published online 13 September 2011 in

Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/col.20710
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INTRODUCTION

Color difference metrics are in general derived from two

kinds of experimental data. The first kind is threshold data

obtained from color matching experiments and they are

described by just noticeable difference (JND) ellipses.

The second kind is visual color difference data and it

gives supra-threshold color difference ellipses.1 For exam-

ple, Friele-MacAdam-Chickering (FMC) color difference

metric2 is based on first kind of data where as the CIE-

LAB3 is based on second kind data.

MacAdam4 was the first to describe just noticeable differ-

ence (JND) ellipses. Later, more elaborated data sets were

established by Brown,5 Wyszecki and Fielder.6 Examples

of supra-threshold color difference based data are BFD-per-

ceptibility (BFD-P),7 RIT-DuPont,8 Witt9 and others. The

former two data sets were also included in the BFD-P data

sets and fitted in the CIE xy chromaticity diagram.7

Riemann10 was the first to propose that colors, as well as

the other objects of sense, could be described by non-Euclid-

ean geometry. Later, Helmholtz11 derived the first line ele-

ment for a color space. Similarly, Schrödinger12 and Stiles13

also elaborated more on Helmholtz’s line element with modi-

fications. The latest and most advanced contribution along

this line, is the zone-fluctuation line element of Vos and Wal-

raven.14 A thorough review of color metrics following the

line element can be found in the literature.15–17

On the other side, color and imaging industries have a con-

tinuous demand for a practical standard for measuring per-

ceptual color differences accurately. So, at present, many

color difference metrics are in existence. Among these, the

CIELAB and the CIELUV3 are popular and the most estab-

lished ones in industries. Theses formulas are defined by Eu-

clidean metrics in their own color spaces that are obtained by

nonlinear transformations of the tristimulus values. The

CIEDE200018 is a revised and improved formula based on

the CIELAB color space, resulting in a non-Euclidean metric.

Another important example is the recent Euclidean color dif-

ference metric, DEE proposed by Oleari19 based on the OSA-

UCS color space. However, all the formulas mentioned

above have some demerits to measure the visual perception

of the color differences sufficiently.20–24 Further, it has also

been noticed by many other color researchers that the small
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color difference calculation using the Euclidean distance

does not agree sufficiently with the perceptual color differ-

ence due to the curvilinear nature of the color space.22,25–29

Studying the various color difference metrics by treating

the color spaces as Riemannian spaces proves useful. In

such a representation, one can map or transfer a color metric

between many color spaces. Basically, in a curved space the

shortest length or the distance between any two points is

called a geodesic. In the Riemannian geometry, distances

are defined in the similar way. Therefore, small color differ-

ences can be represented by an infinitesimal distance at a

given point in a color space. This distance is given by a pos-

itive definite quadratic differential form, also known as the

Riemannian metric. In this sense, the Riemannian metric

provides a powerful mathematical tool to formulate metric

tensors of different color difference formulas. These metric

tensors allow us to compute equi-distance ellipses which

can be analyzed and compared with experimentally

observed ellipses in a common color space.

In this article, the authors formulate the CIELAB, the

CIELUV, and the OSA-UCS based DEE color difference

formulas in terms of Riemannian metric. Similarly,

Riemannian approximation of the CIEDE2000 is also pre-

sented. The CIEDE2000 approximation is hereafter referred

to as the Riemannized DE00. This is done by taking the line

element to calculate infinitesimal color differences dE. In

this process, color difference equations are converted into

the differential form. Again, to obtain the Riemannian met-

ric in a new color space, we need to transform color vectors

from one color space to another. This is accomplished by

the Jacobian transformation. To illustrate the method, the

authors transformed the four color difference formulas men-

tioned earlier into the xyY color space. The equi-distance

ellipses of each formula are plotted in the xy chromaticity

diagram for constant luminance. The input data to compute

the ellipses for our method is the BFD-P data sets.7 The

BFD-P data sets were assessed by about 20 observers using

a ratio method, and the chromaticity discrimination ellipses

were calculated and plotted in the xy chromaticity diagram

for each set.30 A comparison has also been done between

the computed equi-distance ellipses of each formula and the

original ellipses obtained from the BFD-P data set. A

method for comparing a pair of ellipses by calculating the

ratio of the area of intersection and the area of union was

proposed by the authors.31 This method gives a single com-

parison value which takes account of variations in the size,

the shape and the orientation simultaneously for a pair of

ellipses. Therefore, this value is an indicator which tells us

how well two ellipses match each other. A comparative

analysis has also discussed between computed equi-distance

ellipses of different color difference formulas.

METHOD

Ellipse Equation

In the Riemannian space, a positive definite symmetric

metric tensor gik is a function which is used to compute

the infinitesimal distance between any two points.

So, the arc length of a curve between two points is

expressed by a differential quadratic form as given

below:

ds2 ¼ g11dx
2 þ 2g12dxdyþ g22dy

2: (1)

The matrix form of Eq. (1) is

ds2 ¼ dx dy½ � g11 g12

g12 g22

� �
dx
dy

� �
; (2)

and

gik ¼
g11 g12

g21 g22

� �
(3)

where ds is the distance between two points, dx is the dif-

ference of x coordinates, dy is the difference of y coordi-

nates and g11, g12, and g22 are the coefficients of the met-

ric tensor gik. Here, the coefficient g12 is equal to the

coefficient g21 due to symmetry.

In a two dimensional color space, the metric gik gives

the intrinsic properties about the color measured at a

surface point. Specifically, the metric represents the chro-

maticity difference of any two colors measured along the

geodesic of the surface. In general, it gives equi-distant

contors. However, to calculate small color differences

considering infinitesimal distance ds, the coefficients of

gik also determine an ellipse in terms of its parameters

and vice versa. The parameters are the semimajor axis, a,

the semiminor axis, b, and the angle of inclination in a

geometric plane, h, respectively. In equation form, the

coefficients of gik in terms of the ellipse parameter are

expressed as31:

g11 ¼
1

a2
cos2 hþ 1

b2
sin2 h;

g12 ¼ cos h sin h
1

a2
� 1

b2

� �
;

g22 ¼
1

a2
sin2 hþ 1

b2
cos2 h:

(4)

The angle formed by the major axis with the positive

x-axis is given by

tanð2hÞ ¼ 2g12

ðg11 � g22Þ
: (5)

Here h � 908 when g12 � 0, and otherwise h ‡ 908.
Similarly, the inverse of Eqs. (4) and (5) are

1

a2
¼ g22 þ g12 cot h;

1

b2
¼ g11 � g12 cot h:

(6)

Alternatively, the semimajor axis, a, and the semiminor

axis, b, of an ellipse can also be determined by the eigen-

vector and eigenvalue of the metric gik. If k1 and k2 are

eigenvalues of the metric gik, the semimajor axis, a, and

the semiminor axis, b, equal to 1=
ffiffiffiffiffi
k1

p
and 1=

ffiffiffiffiffi
k2

p
, respec-

tively. Like wise, h is the angle between the first eigen-

vector and the first axis.32
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Transformation of Coordinates

In Eq. (1), the quantity ds2 is called the first fundamental

form which gives the metric properties of a surface. Now,

suppose that x and y are related to another pair of coordi-

nates u and v. Then, these new coordinates will also have

new metric tensor g0ik. As analogy to Eq. (3), it is written as:

g0ik ¼
g011 g012

g021 g022

� �
: (7)

Now, the new metric tensor g0ik is related to gik via the

matrix equation as follows:

g011 g012

g021 g022

� �
¼

@x

@u

@x

@v
@y

@u

@y

@v

2
64

3
75
T

g11 g12

g21 g22

� � @x

@u

@x

@v
@y

@u

@y

@v

2
64

3
75; (8)

where the superscript T denotes the matrix transpose and the matrix

J ¼ @ðx; yÞ
@ðu; vÞ ¼

@x

@u

@x

@v
@y

@u

@y

@v

2
64

3
75 (9)

is the Jacobian matrix for the coordinate transformation, or,

simply, the Jacobian.

Ellipse Comparison

Using the principles of union–intersection and ratio

testing, the authors present the method to compare two

ellipses with respect to their size, shape and orientation.

Figure 1(a) shows two ellipses A and B. The common

area is the intersection area between them and the total

area of A and B is known as the union area. From the sta-

tistical point of view, the acceptance region is the inter-

section area and the rejection region is the union area.

The ratio of these intersection and union area gives us a

non-negative value which lies in the range of 0 \ x � 1.

So, the matching ratio is expressed as:

R ¼ AreaðA \ BÞ
AreaðA [ BÞ (10)

High value of R gives strong evidence that the two ellip-

ses are closely matched and vice versa. For example, a

highly matched ellipse pair with R equal to 0.92 and a

poorly matched ellipse pair with R equal to 0.21 are shown

in Figs. 1(b) and 1(c), respectively. Hence, a match ratio

of 1 between a pair of ellipses ensures full matching

between them in terms of size, shape and orientation.

THE COLOR DIFFERENCE METRICS

In this section, the authors show how to derive the Riemannian

forms of the four color difference metrics chosen for the study. Only

the outline of the derivations are given. For the detailed expressions

of the coefficients of the Jacobian matrices, see the Appendix.

The DEab
* Metric

The color difference in the CIELAB color space is

defined as the Euclidean distance,

DE�
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDL�Þ2 þ ðDa�Þ2 þ ðDb�Þ2

q
: (11)

The CIELAB color space defined for moderate to high

lightness is given as

L� ¼ 116
Y

Yr

� �1
3

�16;

a� ¼ 500
X

Xr

� �1
3

� Y

Yr

� �1
3

" #
;

b� ¼ 200
Y

Yr

� �1
3

� Z

Zr

� �1
3

" #
;

(12)

where L*, a*, and b* corresponds to the Lightness, the

redness-greenness and the yellowness-blueness scales in

the CIELAB color space. Similarly, X, Y, Z and Xr, Yr, Zr
are the tristimulus values of the color stimuli and white

reference respectively.

The relationship between X, Y and Z tristimulus coordi-

nates and x, y and Y color coordinates are

X ¼ xY

y
;

Y ¼ Y;

Z ¼ ð1 � x� yÞY
y

:

(13)

FIG. 1. Illustration of the method to compare two ellipses with respect to their size, shape, and orientation.
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If we take the line element distance to measure the in-

finitesimal color difference at a point in the color space,

Eq. (11) becomes differential. In terms of the differential

quadratic form, we can write

ðdE�
abÞ

2 ¼ dL� da� db�½ �
dL�

da�

db�

2
4

3
5: (14)

Now, to transfer or map differential color vectors dL*,

da*, db* into dX, dY, dZ tristimulus color space, it is

necessary to apply the Jacobian transformation where the

variables of two color spaces are related by continuous

partial derivatives. Hence, it is expressed as:

dL�

da�

db�

2
4

3
5 ¼

@L

@X

@L

@Y

@L

@Z
@a

@X

@a

@Y

@a

@Z
@b

@X

@b

@Y

@b

@Z

2
666664

3
777775

dX
dY
dZ

2
4

3
5: (15)

Again, from Eqs. (14) and (15), we have

ðdE�
abÞ

2 ¼ dX dY dZ½ � @ðL; a
�; b�Þ

@ðX; Y; ZÞ

T @ðL; a�; b�Þ
@ðX; Y; ZÞ

dX
dY
dZ

2
4

3
5;
(16)

where @(L, a*, b*)/@(X, Y, Z) is the Jacobian matrix in

Eq. (15).

Similarly, transformation from X, Y, Z tristimulus color

space into x, y, Y color space is done by another Jacobian

matrix @(X, Y, Z)/@(x, y, Y) and expressed as:

dX
dY
dZ

2
4

3
5 ¼

@X

@x

@X

@y

@X

@Y
@Y

@x

@Y

@y

@Y

@Y
@Z

@x

@Z

@y

@Z

@Y

2
6666664

3
7777775

dx
dy
dY

2
4

3
5: (17)

Finally, the L*, a*, b* metric is transformed into x, y,

Y as follows:

ðdE�
abÞ

2 ¼ dx dy dY½ � @ðX; Y; ZÞ
@ðx; y; YÞ

T @ðL; a�; b�Þ
@ðX; Y; ZÞ

T

3
@ðL; a�; b�Þ
@ðX; Y; ZÞ

@ðX; Y; ZÞ
@ðx; y; YÞ

dx

dy

dY

2
64

3
75: ð18Þ

Thus, the Riemannian metric tensor corresponding to

DE�
ab in the xyY space is

gDE�
ab
¼@ðX; Y; ZÞ

@ðx; y; YÞ

T @ðL; a�; b�Þ
@ðX; Y; ZÞ

T @ðL; a�; b�Þ
@ðX; Y; ZÞ

@ðX; Y; ZÞ
@ðx; y; YÞ :

(19)

The DEuv
* Metric

The color difference in the CIELUV color space is

defined as the Euclidean distance,

DE�
uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDL�Þ2 þ ðDu�Þ2 þ ðDv�Þ2

q
: (20)

The CIELUV color space is defined as

L� ¼ 116
Y

Yr

� �1
3

�16;

u� ¼ 13L
4X

X þ 15Y þ 3Z

� �
� 4Xr

Xr þ 15Yr þ 3Zr

� �� �
;

v� ¼ 13L
9Y

X þ 15Y þ 3Z

� �
� 9Yr

Xr þ 15Yr þ 3Zr

� �� �
:

(21)

In complete analogy with the case for DE�
ab, the

Riemannian metric tensor corresponding to DE�
uv in the xyY

space is

gDE�
uv
¼ @ðX; Y; ZÞ

@ðx; y; YÞ

T @ðL; u�; v�Þ
@ðX; Y; ZÞ

T @ðL; u�; v�Þ
@ðX; Y; ZÞ

@ðX; Y; ZÞ
@ðx; y; YÞ :

(22)

The Riemannized DE00 Metric

The CIEDE2000 formula derived from the CIELAB

color space is defined as a non-Euclidean metric in a

space as follows:

DE00 ¼ DL0

kLSL

� �2

þ DC0

kCSC

� �2

þ DH0

kHSH

� �2
"

þ RT
DC0

kCSC

� �
DH0

kHSH

� ��0:5

: ð23Þ

The rotation function, RT, is defined as:

RT ¼ � sinð2DhÞRc; (24)

where Dh ¼ 30 � exp �
�h0 � 275

25

� �2
" #

; (25)

and Rc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C07

�C07 þ 257

s
: (26)

The weighting functions are defined as:

SL ¼ 1 þ 0:015ð�L0 � 50Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 þ ð�L0 � 50Þ2

q ; (27)

SC ¼ 1 þ 0:045 �C0; (28)

SH ¼ 1 þ 0:015 �C0T; (29)

with T ¼ 1 � 0:17 cosð�h0 � 30�Þ þ 0:24 cosð2�h0Þ
þ 0:32 cosð3�h0 þ 6�Þ � 0:2 cosð4�h0 � 63�Þ:

(30)

Here, the lightness, the chroma and the hue are

obtained taking the average of the pair of color

samples for which the color difference is to be
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determined, �L0 ¼ ðL01 þ L02Þ=2, �C0 ¼ ðC0
1 þ C0

2Þ=2 and
�h0 ¼ ðh01 þ h02Þ=2. Further, DH0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
C0

1C
0
2

p
sinðDh0=2Þ.

The color coordinates used in the formula are defined

from the CIELAB coordinates in the following way:

L0 ¼ L�; (31)

a0 ¼ a�ð1 þ GÞ; (32)

b0 ¼ b�; (33)

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02 þ b02

p
; (34)

h0 ¼ arctan
b0

a0
; (35)

G ¼ 1

2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�7

ab

C�7
ab þ 257

s !
; ð36Þ

where L*, a*, and b* corresponds to the lightness, the red-

ness-greenness and the yellowness-blueness scales and C*

chroma in the CIELAB color space. Likewise, h0 is the hue

angle for a pair of samples. The authors like to explain

some problems for formulating Riemannian metric of DE00.

In the DE00 formula as given in Eq. (23), the coordinate H0

does not exist since DH0 is not the difference of any H0. As

per the rules of Riemannian geometry, it is not possible to

get the Riemannian metric of the formula from its original

configuration. However, at infinitesimal color difference, it

is possible to use L0C0h0 coordinates instead of L0C0H0

because C0 and h0 are legitimate coordinates. Calculation of

Riemannian metric using L0C0h0 coordinates gives us an

approximation of DE00 when we substitute dH0 ¼ C0dh0 as

proposed by Völz33 at infinitesimal color difference only.

But, this Riemannized DE00 cannot be integrated to build

CIE defined DE00 due to the definition of DH0. Defining the

metric for infinitesimal color differences, the discontinuity

problems in the hue angle as noted by Sharma et al.34 van-

ish. This is due to taking h0 values instead of taking air-

thmetic mean �h0. However, there are very small discontinu-

ities remaining in RT, caused by the discontinuity of h0 at h0

¼ 0 and in the transformation from XYZ to L*a*b*.

To calculate line element L0, C0 and h0 values are taken.

So, the Eq. (23) in the approximate differential form is

written as follows:

ðdE00Þ2 ¼ dL0 dC0 dh0½ �

3

ðkLSLÞ�2
0 0

0 ðkCSCÞ�2 1
2
C0RTðkCSCkHSHÞ�1

0 1
2
C0RTðkCSCkHSHÞ�1 C02ðkHSHÞ�2

2
64

3
75

3

dL0

dC0

dh0

2
64

3
75: ð37Þ

In Eq. (37), the matrix consisting of weighting func-

tions, parametric factors, and rotation term is the Rieman-

nian metric of the formula in its approximate form. This

metric is positive definite since RT
2/4 \ 1, sin(2Dh) 2

[21, 1] and |RC| \ 2 (see Eqs. (24)–(26)). It can be trans-

formed into xyY color space by the Jacobian method. The

first step is to transform differential color vectors [dL0 dC0

dh0] into [dL0 da0 db0] by computing all partial derivatives

of vector functions L0, C0, and h0 with respect to L0, a0,
and b0. Then, the L0, a0, and b0 differential vecors are

again transformed into L*, a*, and b*. Rest of the other

process is analog to the CIELAB space. The resulting

Riemannian metric tensor representing the CIEDE2000

color difference metric in the xyY space is

gDE00
¼@ðX; Y; ZÞ

@ðx; y; YÞ

T @ðL; a�; b�Þ
@ðX; Y; ZÞ

T @ðL0; a0; b0Þ
@ðL; a�; b�Þ

T @ðL0;C0; h0Þ
@ðL0; a0; b0Þ

T

3

ðkLSLÞ�2
0 0

0 ðkCSCÞ�2 1
2
C0RTðkCSCkHSHÞ�1

0 1
2
C0RTðkCSCkHSHÞ�1 C02ðkHSHÞ�2

2
64

3
75

3
@ðL0;C0; h0Þ
@ðL0; a0; b0Þ

@ðL0; a0; b0Þ
@ðL; a�; b�Þ

@ðL; a�; b�Þ
@ðX; Y; ZÞ

@ðX; Y; ZÞ
@ðx; y; YÞ : ð38Þ

The DEE Metric

The DEE color difference formula is defined as the

Euclidean metric in the log compressed OSA-UCS color

space,

DEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDLEÞ2 þ ðDGEÞ2 þ ðDJEÞ2

q
: (39)

Here, LE, GE, and JE are the coordinates in the log-

compressed OSA-UCS space. The lightness is derived

from the original OSA-UCS formula and their definitions

are expressed as follows35,36:

LE ¼ 1

bL

� �
ln 1 þ bL

aL

ð10LOSAÞ
� �

; (40)

CE ¼ 1

bc

� �
ln 1

bc

ac

ð10COSAÞ
� �

; (41)

COSA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ J2

p
; (42)

h ¼ arctan
�J

G

� �
; (43)

GE ¼ �CE cosðhÞ; (44)

JE ¼ CE sinðhÞ; (45)

with the following constants,

aL ¼ 2:890;

bL ¼ 0:015;

ac ¼ 1:256;

bc ¼ 0:050:

(46)
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Expressing GE and JE in terms of COSA, we have:

cos h ¼ Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ J2

p ;

sin h ¼ �Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ J2

p ;

GE ¼ � CEG

COSA

;

JE ¼ � CEJ

COSA

:

(47)

The OSA-UCS color space is in turn related to the

CIEXYZ color space:

LOSA¼ 5:9 Y
1=3
0 �2

3

� �
þ0:042ðY0 � 30Þ1=3

� �
�14:4

� �
1ffiffiffi
2

p ;

Y0 ¼ Yð4:4934x2 þ 4:3034y2 � 4:2760xy� 1:3744x

� 2:5643yþ 1:8103Þ: ð48Þ

The coordinates J and G, which correspond to the em-

pirical j and g of the OSA-UCS are defined through a

sequence of linear transformations and a logarithmic com-

pression as follows:

A
B
C

2
4

3
5 ¼

0:6597 0:4492 �0:1089

�0:3053 1:2126 0:0927

�0:0374 0:4795 0:5579

2
4

3
5 X

Y
Z

2
4

3
5; (49)

J
G

� �
¼ SJ 0

0 SG

� �
� sin a cos a
sin b � cos b

� �
ln

A=B
An=Bn

� �
ln

B=C
Bn=Cn

� �
2
4

3
5 (50)

¼
2ð0:5735LOSA þ 7:0892Þ 0

0 �2ð0:764LOSA þ 0:2521Þ

� �

3
0:1792½lnA�ð0:9366BÞ�þ0:9837½lnB�lnð0:9807CÞ�

0:9482½lnA�lnð0:9366BÞ��0:3175½lnB�lnð0:9807CÞ�

� �
:

(51)

For calculating the line element at a given point, the

log-compressed OSA-UCS formula given in Eq. (39) is

written as:

ðdEEÞ2 ¼ dLE dGE dJE½ �
dLE

dGE

dJE

2
4

3
5: (52)

The differential color vectors can be transformed into

the OSA-UCS color space by applying the Jacobian

method as follows:

ðdEEÞ2 ¼ dLOSA dG dJ½ � @ðLE;GE; JEÞ
@ðLOSA;G; JÞ

T @ðLE;GE; JEÞ
@ðLOSA;G; JÞ

3

dLOSA

dG

dJ

2
64

3
75: ð53Þ

In the OSA-UCS space, the coordinates J and G are

also related with the lightness function LOSA. So, to

transfer the differential color vectors [dLOSA dG dJ] into

[dx dy dY], it is required to split the differential lightness

vector dLOSA and the differential coordinates dG and dJ
in two parts. At first, let us relate [dLOSA dG dJ] in terms

of [dx dy dY] as follows:

dLOSA

dG
dJ

2
4

3
5 ¼ @ðLOSA;G; JÞ

@ðx; y; YÞ

dx
dy
dY

2
4

3
5 ¼

@LOSA

@ðx; y; YÞ
@ðG; JÞ
@ðx; y; YÞ

2
664

3
775

dx
dy
dY

2
4

3
5;

(54)

where @(LOSA,G,J)/@(x,y,Y) is a 3 3 3 Jacobian matrix

that is further divided into the 1 3 3 and 2 3 3 Jacobian

matrices @LOSA/@(x,y,Y) and @(G,J)/@(x,y,Y), respectively.

The first one is again separated as follows:

@LOSA

@ðx; y; YÞ ¼
@LOSA

@Y0

@Y0

@x

@Y0

@y

@Y0

@Y

� �
: (55)

Similarly, the second one is also separated in two parts

since both G and J depends on x, y, Y not only through A, B,

and C, but also through LOSA. So, the Jacobian follows as:

@ðG; JÞ
@ðx; y; YÞ ¼

@ðG; JÞ
@ðLOSA;A;B;CÞ

� @ðLOSA;A;B;CÞ
@ðx; y; YÞ : (56)

Again, in Eq. (56), the last Jacobian @(LOSA,A,B,C)/

@(x,y,Y) is further split in two parts according to

@ðLOSA;A;B;CÞ
@ðx; y; YÞ ¼

@LOSA

@ðx; y; YÞ
@ðA;B;CÞ
@ðx; y; YÞ

2
664

3
775; (57)

where

@ðA;B;CÞ
@ðx; y; YÞ ¼ @ðA;B;CÞ

@ðX; Y; ZÞ
@ðX; Y; ZÞ
@ðx; y; YÞ : (58)

The first of these is simply the constant matrix given in Eq.

(49), and the last one is already familiar from the other metrics.

RESULTS AND DISCUSSION

In this section, first, the authors discuss the behavior of

computed ellipses of the DE�
ab, the DE�

uv, the Riemannized

DE00 and the DEE in the xyY color space with respect to

BFD-P ellipses individually. Secondly, a comparative

study between computed ellipses of these four color dif-

ference metrics will be done. A detailed quantitative com-

parison is done by using BFD-P data sets.

Before doing comparative analysis, it is necessary to

mention that equi-distance ellipses computed by the met-

ric defined in Eq. (38) represents Riemannized DE00 ellip-

ses for infinitesimal color differences. In fact, the DE00

metric in its original form does not define the Riemannian

space in the strict sense.

Similarly, the ellipses are computed with a constant Y ¼
0.4 in xyY color space. If we define constant lightness, then
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partial derivatives of lightness functions of all Jacobians

will be zero. This gives 2 3 2 metric tensors and ellipses

are computed in the xy chromaticity diagram.

Figure 2 shows BFD-P ellipses in the CIE 1964 chro-

maticity diagram. Similarly, Figs. 3(a)–3(d) show the

ellipses of DE�
ab, DE�

uv, Riemannized DE00 and DEE met-

rics respectively, using BFD-P data. All these ellipses are

computed at the constant lightness value (L* ¼ 50) and

color centers are taken from BFD-P data. In the xyY

color space, this lightness value corresponds to the lumi-

nance Y ¼ 0.4. In the Riemannized DE00 case, parametric

factors (kL, kC and kH) are set to 1. Comparing with BFD-

P ellipses, disagreements can be seen with respect to the

size, shape and rotation in ellipses of DE�
ab, DE�

uv,

Riemannized DE00 and DEE formulas. DE�
ab and DE�

uv ellip-

ses appear more circular than BFD-P ellipses, but Rieman-

nized DE00 and DEE ellipses follow closer to the original

ellipses in the blue and green region. However, it could be

said that all computed ellipses of these four color difference

metrics follow the general pattern of agreement with BFD-

P ellipses. For example, the blue is the smallest, the green

largest and the red, blue, and yellow are more elongated

than others. But, it is also seen that Riemannized DE00 and

DEE ellipses represent experimentally obtained ellipses

more reasonably than compared to DE�
ab and DE�

uv ellipses.

For example, ellipses of DE�
ab, and DE�

uv around neutral and

FIG. 2. BFD-P ellipses in the CIE1964 chromaticity diagram
(enlarged 1.5 times). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

FIG. 3. Computed CIELAB, CIELUV, Riemannized CIEDE00, and OSA-UCS DEE ellipses in the CIE1964 chromaticity dia-
gram (enlarged 1.5 times). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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gray color centers are bigger in size, while in the same

region Riemannized DE00 and DEE ellipses look more simi-

lar to the BFD-P ellipses. This indicates better quality per-

formance of these two color difference formulas over two

popular DE�
ab and DE�

uv formulas. Similarly, DEE ellipses

perform better in the blue region than Riemannized DE00

ellipses. The authors also computed the difference

between the Riemannized DE00 and the original DE00

metrices for finite color differences by using the

CIEDE2000 total color difference test data of Sharma

et al.34 For DE00 � 1, the error is less than 0.5% and for

DE00 � 2, it is smaller than 1.2%. However, It is seen

that in the cases where DE00 [ 2.5, the error between

two metrices steeply raise. But, for larger color differen-

ces, geodesic line can be calculated from the metric ten-

sor of the Riemannized DE00. Basically, DE00 formula is

developed to calculate small color differences because

the BFD-P data set upon which the DE00 formula devel-

oped is scaled for DE�
ab \ 2.7

As described in the Ellipse Comparison part of the

Methods section, the analysis is done by our method for

comparing the similarity of a pair of ellipses. In Fig. 4,

histogram of R values between BFD-P and DE�
ab, DE�

uv,

Riemannized DE00 and DEE ellipses are given in Figs.

4(a)–4(d), respectively. According to this method, the

maximum R values given by DE�
ab, DE�

uv, Riemannized

DE00 and DEE are 0.81, 0.87, 0.95, and 0.93 respectively.

Similarly, the lowest R values of these four formulas are,

0.1, 0.14, 0.2 and 0.2 respectively. Ellipse pairs of all

FIG. 4. Histogram of comparison values of CIELAB, CIELUV, Rie4annized CIEDE00, and OSA-UCS DEE with respet to
BFD-P Ellipses. The values lie in the range 0 \ x � 1. Higher comparison value indicates better matching between a pair
of ellipses. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Number of matching ellipses with matching
values ‡0.75 and �0.75 of four color difference
metrics.

Number of Ellipse pairs
with match ratio ‡0.75

Number of Ellipse pairs
with match ratio �0.75

DE�
ab 3 77

DE�
uv 7 73

DE00 57 23
DEE 55 25

This matching is done with BFD-P ellipses.
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metrics having maximum R values are located around

neutral color region while matching pairs with lowest R
are found around high chroma blue. Table I shows num-

ber of matching ellipses of four metrics with R values

greater than 0.75 and less than 0.75. The result indicates

that the Riemannized DE00 and DEE perform better than

the DE�
ab and the DE�

uv.

The authors have also used box plots to display

ellipse matching values of these metrics in Fig. 5. In the

plots, the median value is marked by the central hori-

zontal lines. The notch indicate the confidence interval

of the median, and the box is bounded by the upper and

lower quartiles of the grouped data. We can see that the

Riemannized DE00 gives the highest median value while

the CIELAB median value is the lowest. By using this

technique, full range of matching value data is also plot-

ted for comparing these four metrics simultaneously. The

range of data is shown by dashed line, and outliers and

marked with a cross. According to this box plot, the per-

formance ranking of these metrics come in the following

order: Riemannized DE00 first, DEE second, DE�
uv third

and DE�
ab fourth. However, there is no big difference

between DE00 and DEE and between DE�
uv and DE�

ab. But,

with respect to Riemannized DE00 and DEE, the perform-

ance of DE�
uv and DE�

ab metrics for matching ellipses is

seen weaker.

In order to compare how well the different metrics

reproduce the BFD-P ellipses, the pairwise statistical sign

test of R values is also done between all pairs of metrics.

The test result shows that at 5% confidence level, Rie-

mannized DE00 and DEE both performed significantly bet-

ter than DE�
uv and DE�

ab metrics. Further, DE�
uv performs

better than DE�
ab with p ¼ 0.0176. There is no significant

difference between DE00 and DEE metrics.

On the basis of above results, it is good to point the

features of color spaces used by these metrics responsi-

ble for better performance. For example, saturation is

defined in DE�
uv not in DE�

ab.37 In DEE, the lightness

LOSA takes into account the Helmholtz-Kohlrausch and

crispening effects.19 Further, the OSA-UCS system

adopts a regular rhombohedral geometry which gives

square grid with integer value of lightness.38 This makes

OSA-UCS space more uniform than CIELAB and CIE-

LUV and suitable for small to medium color difference

measurement. On the other hand, the non-Euclidean Rie-

mannized DE00 have many parameters for computing

color differences. However, this formula has its specific

advantage to correct the nonlinearity of the visual sys-

tem. But, the quality of the formula depends on selecting

parameters values.

CONCLUSION

First, formulation of CIELAB, CIELUV, Riemannized

CIEDE00 and OSA-UCS DEE color difference formulas

into the Riemannian metric is successfully accomplished.

Secondly, The Riemannized DE00 is found indistinguish-

able to the exact DE00 for the small color differences.

Thirdly, computation of equi-distance ellipses of these

four formulas in the xyY color space is done by transferring

Riemannian metrics of formulas into the xyY color space

by the Jacobian method. Fourthly, a comparison between

experimentally observed BFD-P and computed ellipses of

these formulas is done in two ways: first descriptive and

second by our developed comparison technique. On the ba-

sis of our findings as discussed above, the authors can say

that Riemannized CIEDE2000 and OSA-UCS DEE for-

mulas measure the visual color differences significantly

better than CIELAB and CIELUV formulas. However,

neither formulas are fully perfect for matching visual

color differences data. Among CIELAB and CIELUV

formulas, performance of the CIELUV is found slightly

better than the CIELAB. Similarly, there is no significant

difference between Euclidean DEE and Riemannized

CIEDE2000 formulas. It is interesting to note that the

Euclidean DEE formula is not inferior to the complex,

non-Euclidean industry standard DE00 for measuring

small color differences.
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APPENDIX: DETAILED EXPRESSIONS FOR THE

JACOBIANS

From x, y, Y to X, Y, Z

@ðX; Y; ZÞ
@ðx; y; YÞ ¼

@X

@x

@X

@y

@X

@Y
@Y

@x

@Y

@y

@Y

@Y
@Z

@x

@Z

@y

@Z

@Y

2
6666664

3
7777775
¼

Y
y

�xY
y2

x
y

0 0 1
�Y
y

ðx�1ÞY
y2

1�x�y
y

2
4

3
5

(A1)

From X, Y, Z to L*, a*, b*

@ðL; a; bÞ
@ðX; Y; ZÞ ¼

@L

@X

@L

@Y

@L

@Z
@a

@X

@a

@Y

@a

@Z
@b

@X

@b

@Y

@b

@Z

2
6666664

3
7777775

¼

0 116
3

1

Yr

� �1
3

Y
�2
3 0

500
3

1

Xr

� �1
3

X
�2
3

�500
3

1

Yr

� �1
3

Y
�2
3 0

0 200
3

1

Yr

� �1
3

Y
�2
3

�200
3

1

Zr

� �1
3

Z
�2
3

2
6666666664

3
7777777775

ðA2Þ

From X, Y, Z to L*, u*, v*

@ðL�; u�; v�Þ
@ðX; Y; ZÞ ¼

@L�

@X

@L�

@Y

@L�

@Z
@u�

@X

@u�

@Y

@u�

@Z
@v�

@X

@v�

@Y

@v�

@Z

2
666664

3
777775; (A3)
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where the calculations of all partial derivatives are as

follows:

@L�

@X
¼ 0; ðA4aÞ

@L�

@Y
¼ 116

3

1

Yr

� �1
3

Yð�2=3Þ; ðA4bÞ

@L

@Z
¼ 0; ðA4cÞ

@u�

@X
¼ 13 116

Y

Yr

� �ð1=3Þ
�16

 !
60Y þ 12Z

ðX þ 15Y þ 3ZÞ2

" #
; ðA4dÞ

@u�

@Y
¼133 116

Y
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� �ð1=3Þ
�16

 !
�60X

ðX þ 15Y þ 3ZÞ2

" #
;

þ 4X
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� � 133116
1
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3

Yð�2=3Þ

3

0
BBB@

1
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� 4Xr

Xr þ 15Yr þ 3Zr

� � 133116
1
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� �1
3

Yð�2=3Þ

3

0
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1
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(A4e)

@u�
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Y
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 !
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" #
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@v�
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@Z
¼ 13 116
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" #
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(A4i)

From L0, a0, b0 to L0, C0, h0

The Jacobian for this transformation is

@ðL0;C0; h0Þ
@ðL0; a0; b0Þ ¼

@L0

@L0
@L0

@a0
@L0

@b0
@C0

@L0
@C0

@a0
@C0

@b0
@h0

@L0
@h0

@a0
@h0

@b0

2
666664

3
777775 ¼

1 0 0

0
@C0

@a0
@C0

@b0

0
@h0
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@b0

2
6664

3
7775:

(A5)

where the partial derivatives are as follows:

@C0

@a0
¼ a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a02 þ b02
p ¼ a0

C0 (A6a)

@C0

@b0
¼ b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a02 þ b02
p ¼ b0

C0 ðA6bÞ

@h0

@a0
¼ �b0

C02 ðA6cÞ

@h0

@b0
¼ a0

C02 : ðA6dÞ

From L*, a*, b* to L0, a0, b0

The Jacobian for this transformation is

@ðL0; a0; b0Þ
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where the calculation of all partial derivatives are as fol-

lows:

@LE

@LOSA

¼ 10

aL þ 10bLLOSA

; (A10a)

@LE

@G
¼ 0; (A10b)

@LE

@J
¼ 0; (A10c)

@GE

@LOSA

¼ 0; (A10d)

@GE

@G
¼ �

�
CE

COSA

þ G
COSAð10=ac þ 10bcCOSAÞ � CE

C2
OSA

� �

3
G

COSA

�
; ðA10eÞ

@GE

@J
¼ �G

COSAð10=ac þ 10bcCOSAÞ � CE

C2
OSA

� �
J

COSA

;

(A10f)

@JE

@LOSA

¼ 0; (A10g)

@JE

@G
¼ �J

COSAð10=ac þ 10bcCOSAÞ � CE

C2
OSA

� �
G

COSA

;

(A10h)

@JE

@J
¼ �

�
CE

COSA

þ J
COSAð10=ac þ 10bcCOSAÞ � CE

C2
OSA

� �

3
J

COSA

�
: ðA10iÞ

From x, y, Y to LOSA

@LOSA

@ðx; y; YÞ ¼
@LOSA

@Y0

@Y0

@x

@Y0

@y

@Y0

@Y

� �
; (A11)

where

@LOSA

@Y0

¼ 5:9
1

3
Y
�2=3
0 þ 0:042 � 1

3
ðY0 � 30Þ�2=3

� �
1ffiffiffi
2

p ;

(A12a)

@Y0

@x
¼ Yð4:4934 � 2x� 4:2760y� 1:3744Þ; (A12b)

@Y0

@y
¼ Yð4:3034 � 2y� 4:2760x� 2:5643Þ; (A12c)

@Y0

@Y
¼ 4:4934x2 þ 4:3034y2 � 4:2760xy� 1:3744x

� 2:5643yþ 1:8103: ðA12dÞ

From LOSA, A, B, C to G, J

@ðG; JÞ
@ðLOSA;A;B;CÞ

¼

@G

@LOSA

@G

@A

@G

@B

@G

@C
@J

@LOSA

@J

@A

@J

@B

@J

@C

2
664

3
775; (A13)

where

@G

@LOSA

¼ TG

@SG

@LOSA

¼ TG � �23 0:764; (A14a)

@J

@LOSA

¼ TJ

@SJ

@LOSA

¼ TJ � 23 0:57354; (A14b)

@G

@A
¼ SG

0:9482

A
; (A14c)

@G

@B
¼ SG

�0:9482 � 0:3175

B
; (A14d)

@G

@C
¼ SG

0:3175

C
; (A14e)

@J

@A
¼ SJ

0:1792

A
; (A14f)

@J

@B
¼ SJ

�0:1792 þ 0:9837

B
; (A14g)

@J

@C
¼ SJ

�0:9837

C
; (A14h)

where the shorthands

TG ¼ 0:9482½lnA� lnð0:9366BÞ�
� 0:3175½lnB� lnð0:9807CÞ�; ðA15aÞ

TJ ¼ 0:1792½lnA� lnð0:9366BÞ�
þ 0:9837½lnB� lnð0:9807CÞ�; ðA15bÞ

have been introduced.
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