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Vacuum Energy and Inertial Dragging
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we investigate if there is any inertial dragging effect associated with vac-
uum energr. Spacetime inside and outside a rotating thin shell, as well as
the mechanical properties of the shell, are analyzed by means of Israel's
general relativistic theory of surface layers. Our investigation general-
izes that of Brill and Cohen, who found vacuum-solutions of Einstein's
field equations (with vanishing cosmological constant), inside and out-
side a rotating shell. we include a nonvanishing vacuum-€nerry inside
the shell. It is found that the inertial dragging angular velocity increases
wrlh increasing density of vacuum energ-y.

1. INTRODUCTION

Vacuum-energy has some remarkable, and well-known, gravitational prop-
erties. Together with the Lorentz invariance of vacuum Einstein's field
equations imply that vacuum acts upon itself with repulsive gravity. It
seems, however, that the inertial dragging properties of vacuum have not
been investigated. The reason may be that inertial dragging, i.e. the
Lense-Thirring effect, is usually associated with rotational motion, and
the Lorentz invariance of the vacuum implies that vacuum-energ-y is non-
rotating. Hon'ever , it has sense to say that vacuum-energ-y has expansion.
At the end of the inflationary era this expansion is transferred to radia-
tion and matter, and this may explain the observed state of expansion of
the universe. Likewise the observed absence of cosmic rotation may be
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due to the non-rotat ion of  the vacuum-energy in the vacuum-dominated

inf lat ionary era [1] .
In this article we investigate lhe possibil i ty that the vacuum-energy

nray have determined the large scale motion of the universe in a Machian

way, by means of a mechanism involving the inertial dragging effect. This

possibi l i ty  depends upon the answer to the quest ion:  " Is there any inert ia l

dragging effect associated with vacuum ettergv?" In order to approach this

quest ion we general ize the c lassical  invest igat ions of  Lense and Thirr ing

[2]  and later of  Br i l l  and Cohen [3,4j ,  n 'here they establ ished the existence

of the rotational inertial dragging effect. and noted its possible cosmic

significance.

2. INERTIAT DRAGGING INSIDE A ROTATING SPHERJCAT SHELT

Brill and Cohen [3] found the spacetime line-element inside and out-

side a thin shell rotating with angular velocity a.'s. They expressed the

line.eiement in isotropic coordinates and found

d.s2 : v2dt2 - , l tnlar2 + f l  {dg2 * sin2 e@,d - CI(r)dt)2} l ( 1 )

with

( ) \

( 3 )

n,here fuI and fs ar€ the mass and radius of the shell, respectively. The

function 0(f) is the angular velocitl ' of the inertial dragging field. It is

given by
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has some interest ing propert ies. First of al l  i t  reduces to
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f)s : L,)s - the induced rotation inside the shell equals the rotation of the
shell - is possible. It occurs if the shell is positioned at its Schwarzschild
radius, f o : M /2. A shell of matter of radius equal to its Schwarzschild
radius may be taken as an idealized model of our universe. In such a model
there cannot be a rotation of the local inertial frames relative to the large
masses in the universe. The result of Bril l and Cohen may thus explain,
in a Machian way, the observation that the swinging plane of a Foucault
pendulum docs not rotate relat ive to the stars.

In the present article we gener abze the investigation of Bril l and Cohen

by including vacuum energy inside the rotat ing shel l .

3. VACUUM ENERGY

There is now a great literature on inflationary cosmological mod-
els [5,6]. In most of these models the vacuum energy is due to a scalar
field / with Lagrangian density

c : i Q , * Q , r _ v ( o )

where the potential V (O) is typicaliy of the Coleman-Weinberg form for
the .9t4 Higgs field. The energy-momentum tensor for this field is

( 7 )

r8)

(e)

( 1 0 )

T p r : - Q , p 6 , r - L g p u

Assuming that the universe model is spatially homogeneous, 7r, takes
the perfect fluid form u'ith energ-y density and pressure given by

p :  ( i o ' )  +  v (a ) . t 7  
' ' r t  

r r /p : ( ; 6 ' ) - V ( o )

A perfect fluid with Lorentz invariant properties shall here be called a
'vacuum f luid' .  Demanding that the components of the energy-momentum
tensor be Lorentz invariant leads to the form [71

Tr,  :  pvgp,

where the energy densi|y pv is in general a function of the four space'

time coordinates. In a spatially homogeneous universe model the density

measured by an observer can at most depend upon the time coordinate.

Due to the relat iv i ty of  s imultanei ty the homogeneity of  space is Lorentz

invar iant  only i f  p,  :  col lstant.2 In the present work we shal l  consider a

universe modcl  which fu l f i l ls  th is condi t ion.

E < l i t o r ' s  n o t e :  E q u a t i o r r  ( 1 0 )
pr .  :  C( )nSt .an t  w i t l ro r r t  f r r r t ,  l r c r

i r r r r i  t he  conse rva t i on  l aw  T t ' "  . , ,  :  0  a l ready ,  i r np l , r

< : o n c l i t  i o r t s .
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Comparing the
of a perfect fluid

( 1  1 )

we find that the equation of state for a vacuum fluid is

p v : - p v .  ( 1 2 )

As to the effect of the scalar field upon the spacetime geometry, this field

acts as a combination of a vacuum fluid and a Zel'dovich fluid (a stiff fluid
with sound velocity equal to the velocity of light) with equation oi state

form (10) of the energy-momentum

T t r : ( p + p ) u p u v - P g p ,

P z : P z

Fb.rup and Gr6n

tensor with that

( 1 3  )

( 1 4 )

- Go)
General relativistic models of spacetimes with vacuum energ-y inside

and outside nonrotating spherical singular shells have been thoroughly
investigated [8-12]. The effect of the vacuum energ-y outside a static shell

is only to modify the equation of state for the matter that the shell consists

of. In our approach, based upon a perturbation of the static situation,

and for our intention, which is to investigate the effect of the vacuum

energy inside a rotating shell (i.e. inside our universe) upon the motion

of inertial frames in this region, it will be suitable to assume vanishing
vacuum energy outside the shell. Also the Zel'dovich component of the

energ-y-momentum vanishes in a stationary situation, which is considered
in the present investigation.

4. ROTATING SHEtt CONTAINING VACUUM ENERGY

In the static case there is de Sitter spacetime inside the shell and

Schwarzschild spacetime outside it. The shell is assumed to rotate slowly,

and the effect of the rotation is introduced as a perturbation of the static

metric. The line-element is now written

dr2
ds2 -  g( r )d t2 - ,2 {do2 * sinz o(dO - af)dt)2)

f  ( r)

where

f  ( r ) - I- \
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Here p is the constant energy density of vacuum, and the subscript 0

indicates the value at the shell, i.e. at r : r0. The mass M inside r - ro

is partly due lo the vacuum energ-y, and partly to the shell.
Both outside and inside the shell the O3-component of Einstein's field

equations reduces to
r Q "  +  4 Q '  -  0 .

Integrating this equation, demanding non-singularity at r :

dragging angular velocity at infinity, and continuity across

obtain
" _ l Q p ( r o l r ) t ,  r l r s

[  0 r  r  1 r s .

The constant Qp will now be calculated by means of Israel's general rel-

ativistic theory {13] of singular surfaces in terms of the radius, mass and

angular velocity of the shell.
Let V- and l/+ be the spaces inside and outside the shell, D, re-

spectively. The way D curves in V- or V+ is describ"d by the ertrinsic

curvatwe tensor with components

K i :  - f t i ; j  -  - r f  i , j  + n P T k ; ,  ( 1 9 )

where n is the unit normal vector of X. Let K$ denote the value of Ki,

in V+, and K, its value in V-. Introduce K* : gii Ktr and

( 1 7 )

0, vanishing
the shel l ,  we

( i B )

(20)

The energ-y-momentum tensor of the shell is given by

.l

s, -; ( lK, ' l  - eull( l  ) .  (21)

The components of the enerry-momentum tensor may be interpreted
physically by the following procedure. The eigenvalues )1ry and eigenvec-
tors u(k) of this tensor are given by

[ K , , ] - K J - K ; , l K ) : K + - K -

l S ' i - ) 1 1 1 6 ' r l  : 0

S i  1d1r1 :  t r to l {o l

bars denote the determinant, and the

a tag tel l ing 'which vector '  and does

and

where the vertical
parenthesis is only

(22)

(23)

subscript in the
not denote the
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conlponent of  a vector.  Equat ion (22) represents a th i rd degree equat ion

for )  rv i th roots )11y, )1a;, ) (d).  Equat ion (23) gives the three a^ssociated

eigenvectots ?- ' , t )  ,  u@), u(A).  I t  fo l lows from eq. (23) and the symmetry of

the energy-momentum tensor that thel' are orthogonal. They are fixed

by' choosing then to be unit vectors. These vectors then represent an

orthonormal basis- f ie ld at  the source. The components of  S are norv given

the fol lowing physical  interpretat ion.  fhe vector u(r)  :  u is the four-

'e loci t"v f ie id of  the shel l '  The eigen'alue )1r )  :  o is the energy-densi ty

3s preasured b-v an observer comor.' ing rvith the shell. The eigeuvalues

) (^ . )  :  -p ( t r ) ,  k  :1 ,2  a re  the  negat ive  o f  the  s t rcsses  he  measures '

We shall iater need the follorving decomposition of the energy-momen-

tum tensor of  the shel l

2
^; ; f-\ ;
5 o r :  o u ' u i  +  L P 1 * y u i r ) u 1 , t t ,

l c : l

Calculating the components of the energy-momentum tensor of the

shel l  from eq.(14) and the l ine.elements in eqs. (14)-(16), we f ind

0oo - 1so

(24)

L J  t -
(25)

(26)

(  ) 7 \

(28)

Anrg 
'

sd,:.f f i  (++0o.. k.W)

y r : ( 1 , 0 , r d 1

To first order in c^.rs and Qp the four-velocity is

In order to relate the components of the energy-momentum tensor to

the physical properties of the shell, we may use the decomposition (24)

of the energ-y-momentum tensor. We need to find the vectors u and u1t1.

The four-velocity of the points on the shell is

The trvo vectors u1r; must be chosen so that they are mutually orthogonal,

normal, and orthogonal Lo u. Choosing

sre  :  sd6 :  
io r ,  

-  gso (# , .W) \ ,

?rn -  (1,o,  rs) lgs" (2e)

(30 )u l o l :  ( t o , 1 l , - o , 0 )
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leads to
, td  :  ?o0so- '  ( r ,  -  Qp)  s in  g ,  0 ,  ( t o  s ind ) - r ) .

From eq. Qq we now find to first order in the angular velocities

S t t : o ,

S o r : 5 6 6 : - p ,

S Q t : r s ( o + P ) .

Comparing these expressions with those in eqs. (25)-(27) we obtain

447

( 31 )

(32)

(33 )
(34)

7po - 7so
v - 

4lrrg 
r

L (  M 8"p '3 \  o
P : ; -  I  -'  Snrs \ropso 30o" / 2'

CIp 8r(o + p)

(35)

(36)

(37)
as 4r(o + 2p) * gsol2ro + goof rs'

or equivalently
0" _ 0s, - 0o"(l - 3M lro)
as 7so - 0oo/2

It may be noted that there is no inertial dragging inside
wall, which hus p - -o.

5. DISCUSSION

\ s o : g o o : $ - I , I l r n

and the components of the metric tensor are continuous
Inserting this into eqs. (29), (37) and (38) we get

We shall first consider some special cases. If we put the shell at the
position

/  3 M  \ t / 3
ro :  (*r) (3e)

then

(38)

a spherical domain

(40)

across the shell.

M
o : 0 ' ,  P - 4 l r fopo '

{lp _ 2lut

u s  ? g
( 4 1 )

This situation must be considered rather unphysical since the rest mass
density of the shell vanishes.
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Let us now compare our result with that of Bril l and Cohen [3]. They
considered a rotating shell with vanishing energy density in its interior.
Insert ing P:0 and Bpo - 1 into eq. (38) gives

Q r _

Q S

/ s o * 3 M / r s - l
7so + l l2 ' (42)

(43)

(44)

which looks different from the result of Bril l and Coher, €e. (5). However,
our result is expressed in Schwarzschild coordinates while eq. (5) is valid
in isotropic coordinates. The isotropic radial coordinate is related to the
Schwarzschild coordinate by the transformation

r : f ( r + M l 2 r ) 2

Using this in eq. $2), eq. (5) is recovered.
We shall now discuss the conditions for 'perfect dragging'. In the case

considered by Brill and Cohen eqs. (35) and (36) reduce to

I - 1 s o 7 s o + M l r s - I
o - p -

4Trg 
'

Perfect dragging inside the shell happens
l e a d s t o o : l / 8 n M , p : m .

Qp /r ,

0

Figure 1. Angular dragging
radius of the shell for different
c o r r e s p o n d s t o p - 0 .

STrsBso

for 16 - 2M , i.e. 1so : 0, which

velocity in the interior of the shell as function of the
values of the vacuum enerry density. The lowest curye
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In the general case, with non-vanishing vacuum energy inside the shell,

we reformulate eq. (38) for the inertial dragging angular velocity as follows:

Sgoogso'

449

(45)
20so * 0oo

This expression shows that for fuI > 0 and p > 0 we must have Qp ( cus,
i.e. we cannot have 'over-perfect' dragging.

There are now two possibilities that lead to perfect dragging: either

7so :0, i.g.j_q_: 2M which leads to o : 7oo4trrs, P : oo, or 0oo - 0,
i .e .  rs  :  {3 l8rp which leads to  o :  -1sof4Trs,  p :  F.  Both wi th  and
without vacuum energy inside the shell, perfect dragging onlv happens
when the stresses in the shell diverge. Thus perfect dragging only takes
place in a physically unobtainable limiting case.

In Figure 1 we have plotted the relative dragging angular velocity
in the interior of the shell for different values of the energy density. We
see that the dragging angular velocity increases with increasing vacuum
energy density, indicating that this energy contributes to the dragging.
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