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Chapter 1

Introduction

When writing a thesis like this, one should know for certain what the reader
is like. I have assumed that my reader knows much about classical mechanics,
general relativity, and hence also differential geometry. Therefore, I shall not give
any introduction to such topics here. In the main chapter, the one on rotating
shells, we will need Israel’s formalism for thin surfaces. I do not expect this to
be a very well-known formalism, so I have included a short introduction here in
order to make the thesis as self-contained as possible.

Conventions

Through this thesis I have tried to use a notation which does not differ too much
from the one usually encountered in the litterature on general relativity. However,
some points should be noted:

1. The signature is (+ − −−), i.e. time-like vectors have positive squared
‘length,’ while that of the space-like ones is negative.

2. Greek indeces such as µ, ν and λ are used to denote the components of
tensors with respect to a coordinate frame, e.g. (t, x, y, z).

3. Components with respect to an orthonormal basis field are denoted with a
hat, e.g. µ̂, taking the values (0, 1, 2, 3), where the first one is time-like. The
components of the metric tensor in a local orthonormal frame are denoted
ηµ̂ν̂ = diag(1,−1,−1,−1).

4. Vectors and tensors as geometrical objects are usually denoted with latin
letters set in boldface, e.g. a, while forms are denoted with boldface Greek
letters, such as ξ. The basis vectors are denoted eµ, and the basis forms
ωµ. One exception to this rule is that the operator giving the exterior
derivative—which clearly is a form—is called d.

Whenever any other notation is used, it will be explained.

1



2 Chapter 1. Introduction

We shall also be using geometrised units, i.e. G = c = 1, where G is Newton’s
gravitational constant, and c the speed of light. This means that everything will
be measured in powers of the unit for lengths, which is taken to be metres (m).

1.1 Inertia and Mach’s principle

The main goal for this thesis is to describe the connection between vacuum and
inertia. Let us therefore see how the concept of inertia fits into the classical
theories, and where the problems lie.

When Newton formulated his classical mechanics he was aware of the prob-
lems assosiated with inertia. In his theory some frames of reference were more
“preferred” than others. These were called inertial frames, and in them the so-
called inertial (or fictive) forces disappeared. Newton was very eager to find out
the reason behind this selection of frames. First he observed that two inertial
systems were moving with constant relative velocity. This is a variant of New-
ton’s first law of motion. So, none of them were rotating nor accelerating relative
to the others. It was then natural to ask what the origin of the inertial forces
experienced in a rotating system was: the relative or the absolute (if any) mo-
tion? To find out of this Newton constructed his well-known experiment with the
rotating vessel.

A vessel almost filled with water stays at rest relative to the earth. When
having done so for a while, none of us is surprised to find that the surface of the
water is flat. Then Newton makes the vessel start rotating. At first the water is
unaffected; it is at rest relative to the earth, and the surface of the water remains
flat. After a while, the water is rotating along with the vessel, and its surface
becomes shaped like a paraboloid. Then Newton makes the vessel stop. At first
the water rotates with a parabolically shaped surface, but after a while it stops,
and becomes flat again. Newton’s conclusion to this experiment is clear. The
relative motion of the vessel and the water makes no contribution to the inertial
forces in the water (which make its surface curve). It is the absolute motion of the
water that matters. But, if it shall make any sense to speak of absolute motion,
we must have an absolute space wherein it can take place. This was Newton’s
conclusion [1].

Many people have disliked this conclusion. Bishop Berkeley (1685–1753) com-
mented that even though the water was at rest relative to the vessel, it was ro-
tating relative to the earth and the fixed stars [2]. He meant that the effect of
the vessel was negligible and that the effect was caused by the fixed stars.

Mach brought these ideas further [3]. He suggested that if the walls of the
vessel were increased in thickness until they ultimately were several leagues thick,
they would have the stronger impact on the water, which in turn would have a
flat surface even though the vessel was rotating relative to the fixed stars. If this
was so, he argued, the notion of “absolute space” is obsolete. This leads up to
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what is now known as Mach’s principle, which can be formulated as

The inertial mass of a body is caused by its interactions with the other

bodies in the universe.

This surely reflects Mach’s thoughts, but it was probably Einstein [4] who first
formulated it as a principle, and referred to it as “Mach’s principle.”

The Sagnac experiment

We would like to have a device which is able to measure its rotation relative to
an inertial frame—a sort of ‘compass of inertia’ (as required by Gödel [5]). We
have already seen that a vessel filled with water can do the job, but it relies on
the gravitational force of a nearby collection of matter (such as the earth). The
famous Foucault pendulum also does the job, but it has the same restriction as
the vessel.

Sagnac developed a device which was able to do the job: An optical fibre,
or anything capable of carrying a photon in a closed curve, is arranged in a
circle with radius r0. At one point photons are emitted in both directions in
the closed ring. After a while the photons return. In this way it is possible to
measure the amount of time used by the photons around the circle. If they return
simultaneously, the device is non-rotating, whereas it is rotating if they return
at different instants. The difference in time consumption measures how fast the
device is rotating relative to an inertial frame.

Let us carry this out in detail in an otherwise empty universe. The geometry
is Minkowskian, given by

ds2 = dt2 − dr2 − r2(dϑ2 + sin2ϑ dϕ2). (1.1)

If the device is rotating relative to this system, it is at rest relative to another
system given by ϕ 7→ ϕ−ωt, where ω is the angular velocity of the system. This
gives the line element

ds2 = dt2 − dr2 − r2
(

dϑ2 + sin2ϑ(dϕ− ω dt)2
)

= (1 − r2ω2 sin2ϑ)dt2 − dr2 − r2(dϑ2 + sin2ϑ dϕ2) + 2r2ω sin2ϑ dϕ dt.(1.2)

The circular ring is at rest in this system, with center at origo, and has radius r0.
The equation of motion for light in its interior is given by ds = dr = dϑ = 0, or

0 = (1 − r2
0ω

2)dt2 − r2
0dϕ

2 + 2r2
0ω dϕ dt (1.3)

⇒ dϕ

dt
= ω ± 1/r0. (1.4)

The term 1/r0 clearly is the angular velocity of light in the case of a non-rotating
circuit, and 1/r0 ≫ ω. Therefore, in the +-solution the light travels in positive
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ϕ-direction, while dϕ/dt < 0 in the −-solution. Thus the times consumed by the
two oppositely directed photons are

2π = (ω + 1/r0)t+ ⇒ t+ =
2πr0

1 + ωr0
, (1.5)

2π = (ω − 1/r0)t− ⇒ t− =
2πr0

1 − ωr0
. (1.6)

Hence, the time difference measured by our device is

∆t = t− − t+ =
4πr2

0ω

1 − ω2r2
0

. (1.7)

We notice that ω → 0 ⇒ ∆t → 0 and r0ω → 1 ⇒ ∆t → ∞. This shows that
the time difference measured by the Sagnac device is determined by its angular
motion. When ∆t = 0, the device is positioned in a non-rotating system. Thus,
the Sagnac device is exactly what we wanted: a device which by measurements
can separate rotating from non-rotating systems without having to rely on the
gravitational forces of a nearby mass.

1.2 Dragging of inertial frames

When Mach presented his view on the rotating vessel, there were no theory which
was capable of explaining the effects he predicted. The only known theory of
gravitation was that of Newton, which certanly contained some weaknesses—e.g.

that two bodies at different positions may act upon each other instantaneously.
When Einstein presented his general theory of relativity, Mach’s principle got its
renaissance. According to this theory, inertia is a manifestation of the geometry
of space–time. It also states that the geometry is affected by the presence of
matter to an extent proportional to the factor G/c2.

We may now consider the rotating vessel again. As a model for it we shall use
a rotating sperical shell, with angular velocity ωs, mass ms and radius rs. From
dimensional analysis it is easy to deduce that the angular velocity of a nearby
‘compass of inertia’ is

ωd = k
G

c2
ms

rs
ωs, (1.8)

where k is a numerical constant which has to be found by detailed calculations
and d suggests ‘dragging.’ The angular dragging velocity may be measured by a
Foucault pendulum or a Sagnac circuit. Lense and Thirring (1918) [6, 7] showed
that

k = 4/3 (1.9)

in the interior and at the poles of the spherical shell. However, they used a weak
field approximation, and assumed slow rotation. Using geometrised units, the
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result may be written

ωd =
4msωs

3rs
. (1.10)

The earth itself may be seen as a rotating vessel like this. Its dragging velocity
is very small:

ωs ∼
Mearth ωearth

Rearth
∼ 5 · 10−14 rad/s, (1.11)

and cannot be measured.
If we carry this calculation out for a pulsar with mass equal to that of the sun

and a radus of 10 km performing 30 rotations per second, we get

ωd =
Mpulsar ωpulsar

Rpulsar
∼ 0.15ωpulsar ∼ 30 rad/s ∼ 4.5 rotations/s, (1.12)

which is measurable indeed. However, the gravitational field surrounding a pulsar
can hardly be regarded as weak.

The total dragging effects measured by a Foucault pendulum or a Sagnac
device will in general depend on the combined effect of all masses in the universe.
Hence, equation (1.10) more appropriately, if also somewhat symbolically, reads

ωd ∼ msωs

rs
+

∑

distant “stars”

M“star”ω“star”

R“star”
. (1.13)

Experience tells us that if there is no nearby star (or spherical shell), a ‘compass
of inertia’ will not measure any rotation relatively to the stars. In this case we
must have

∑

“stars”

M“star”

R“star”
∼ Muniverse

Runiverse
∼ 1. (1.14)

This is exactly the relation between mass and radius of the universe at the max-
imum expansion of the Friedman model universes, which shows that the locally
experienced inertial frames might be a consequence of the movement of the dis-
tant stars.

The locally measured inertia of a body seems to be determined by the exis-
tence of distant stars. How does the Minkowskian space–time fit into this picture?
This manifold does certainly describe an empty space–time, but it is easy to see
that test particles do have an inertia associated with them. This should be impos-
sible according to Mach’s principle. The Minkowskian space–time must therefore
be seen as a limit space for closed space–times, which, according to Einstein,
is what the general theory of relativity describes (The theory includes not only
the geometrodynamic law, but also, in Einstein’s view, the boundary condition
that the universe be closed). The Minkowskian manifold may also be taken as
a description of the space–time in the interior of a cosmic massive shell. Then
there is no problem with the inertia associated with test particles.

In 1966 the result was generalised to strong fields by Brill & Cohen. Later we
shall have a detailed look at their work, so we leave it for now.
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1.3 This thesis

The next chapter will show us that vacuum is capable of containing energy, and
that it, under certain circumstances, does. Since, again according to Einstein,
mass and energy are equivalent, this means that the vacuum must exhibit some
of the properties usually assosiated with “ordinary masses.” What interests us is
whether the vacuum has any inertial properties, whether it is capable of moving,
and whether it has dragging properties like those mentioned above. The remain-
ing part of the chapter will be concerned with general aspects of phenomena like
acceleration and how to measure it.

In chapter 3 we shall try to describe how energetic vacuum looks to a linearly
accelerated observer in order to find out something about the inertial properties
of vacuum. The results are not promising to the wanted degree. In chapter
4 we shall revisit Newton’s rotating vessel in form of a sperical shell, capable
of containing energetic vacuum. This gives an interesting result, and in the last
section we shall try to draw a conclusion to the question ‘does the vacuum rotate?’



Chapter 2

Preliminaries

This chapter contains known results which will turn out to be a necessary back-
ground to the following chapters. They are included in order to make the thesis
as self-contained as possible.

2.1 Polarized vacuum

From relativistic quantum mechanics we know that vacuum is not as empty as
previously thought. There are always ongoing prosesses, such as creation and
annihilation of elementary particles. Zel’dovich showed in 1968 [8] that this
vacuum polarization gives rise to an energy–momentum tensor of the form

Tµν = ρgµν , (2.1)

where the energy density ρ is positive.
In 1986 Grøn [9] showed, using a purely classical argument, that this form

on the energy–momentum tensor follows from the Lorentz invariance of vacuum
alone. Consider the components of the energy–momentum tensor Tµ̂ν̂ in a local
orthonormal frame. According to any known experiment these values should be
preserved under a Lorentz transformation (constant velocities are undetectable),

Tµ̂ν̂ = Tµ̂′ν̂′ = Λα̂
µ̂Λβ̂

ν̂Tα̂β̂. (2.2)

This relation must be satisfied for any Lorentz transformation, e.g. for conven-
tional Lorentz boosts in the directions given by the coordinate axes. In the
x1-direction, the transformation matrix is

Λµ̂
µ̂′ =











γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1











, γ =
(

1 − v2
)−1/2

. (2.3)

7
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Performing Lorentz boosts in the three directions, and demanding invariance,
gives

Tµ̂ν̂ =











T00 0 0 0
0 −T00 0 0
0 0 −T00 0
0 0 0 −T00











= T00ηµ̂ν̂ . (2.4)

Remembering that T00 = T 00 in a local orthonormal basis, we understand that T00

equals the proper energy density ρ of the vacuum. In homogeneous cosmological
models the energy density as measured locally by an observer can be a function
of time only. The relativity of simultaneity then gives that ρ = constant = ρ0.
Even though this is so, we shall usually be referring to it as ρ. Transforming the
result to an arbitary basis {eµ} gives

Tµν = ρgµν (2.5)

—the result obtained from quantum mechanics by Zel’dovich.

Vacuum as a perfect fluid

It is interesting to find that the above result for the energy–momentum tensor of
vacuum fits into the formalism for perfect fluids.

Consider a portion of a perfect fluid. The fluid is taken to be continous, and
is allowed to move freely. Insert an orthonormal comoving basis into this fluid.
According to the observer carrying this frame, the fluid is locally at rest, whence
Pascal’s law for perfect fluids is valid: The pressure p applied to a given portion
of the fluid is transmitted equally in all spatial directions and is everywhere
perpendicular to the surface on which it acts. Thus, the three dimensional stress
tensor is given by

σ ı̂̂ = p δ ı̂̂, (2.6)

where ı̂ = 1, 2, 3 covers the spatial directions.
The energy–momentum tensor may everywhere be written symbolically as

T µ̂ν̂ =

(

T 00 T 0ı̂

T ı̂0 σ ı̂̂

)

. (2.7)

Because we are positioned in a local orthonormal frame, T 00 = ρ, and because
the frame is moving together with the fluid, the energy transport, T 0ı̂ = T ı̂0,
vanishes. Thus, the energy–momentum tensor in this special frame is

T µ̂ν̂ =

(

ρ 0
0 σ ı̂̂

)

=











ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p











. (2.8)
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We now want to find the energy–momentum tensor in any frame. Remem-
bering that two tensors are equal if and only if they have the same components
in one special basis, it is easy to find the general expression if we introduce the
vector four velocity, uµ:

T µν = (ρ+ p)uµuν − pgµν . (2.9)

In a local orthonormal comoving basis, uµ̂ = (1, 0, 0, 0) and gµ̂ν̂ = ηµ̂ν̂ , so the ex-
pression is clearly correct. How does the previously obtained energy–momentum
tensor for the polarized vacuum fit into this? Well, letting

p = −ρ, (2.10)

we see that the two expressions are equal. This equation is therefore usually
referred to as the equation of state for the polarized vacuum.

Vacuum energy vs. a cosmological constant

We may now construct Einstein’s field equations with polarized vacuum as the
only source:

Gµν = 8πTµν = 8πρ gµν . (2.11)

We notice that they closely resemble the source-free field equations with a cosmo-
logical constant Λ (as proposed by Einstein in order to obtain solutions describing
static universes)

Gµν − Λgµν = 0 ⇔ Gµν = Λgµν . (2.12)

Comparing the two equations, we see that they are identical, with the formal
substitution Λ ↔ 8πρ. We might thus say that the vacuum energy acts as a
cosmological constant, and there will be no observable difference between effects
caused by 8πρ and Λ.

Every known source-free solution of Einstein’s field equations with a cosmo-
logical constant Λ > 0 is also a solution of the equations with polarized vacuum
as the only source. The most famous and useful solution with these properties is
the de Sitter solution.

The de Sitter solution

In 1917 de Sitter [10] found a solution of Einstein’s field equations with positive
cosmological constant. Later Eddington [11] gave it the form most used nowadays,

ds2 =

(

1 − Λr2

3

)

dt2 − dr2

1 − Λr2/3
− r2dΩ2, dΩ2 = dϑ2 + sin2ϑ dϕ2. (2.13)

Substituting r = sinR gives the original version found by de Sitter, where the
radial coordinate R is the radial distance as measured by standard measuring
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rods. In the next section we will see that an observer at rest in this geometry
will experience a repulsive gravitational force, which suggests that the solution is
suited to describe an expanding universe. It is indeed, for it may be written

ds2 = dt2 − e2
√

Λ/3 t
(

dr2 + r2dΩ2
)

. (2.14)

In this isotropic coordinate system every point of constant spatial coordiantes
represent geodesics, and may be considered to be “at rest.” According to this
view, the solution describes a universe which expands exponentially with time,
i.e. the distance between two points of constant spatial coordinates expands ex-
ponentially.

In chapter four we shall use the first version of the de Sitter line element, with
the formal substitution Λ 7→ 8πρ, because it is static. We shall use it to describe
a region of polarized vacuum inside a massive shell.

We notice that the static form of the de Sitter universe has a horizon at
r0 =

√

3/Λ. The expansion is so fast that points separated by more than this
amount will be causally disconnected because light is incapable of reaching from
the source to the destination before the distance has increased too much.

The expanding de Sitter solution is used to describe the so-called inflationary

era, the epoch short after the creation of the universe during which it was vacuum
dominated and expanded enormously. One believes that this epoch started about
10−35 s after the creation (when the GUT symmetries broke), and lasted until
10−33 s. During this relatively short period, the physical distances of the universe
had increased by a factor 1030. For an introduction to these phenomena, see
Grøn [9].

2.2 The hyperbolically accelerated system

Constant linear acceleration in Minkowskian space–time is described by the so-
called hyperbolically accelerated system. In the next chapter we shall try to
describe accelerated motion in a universe containing polarized vacuum. It is
therefore natural to give a short presentation of the hyperbolically accelerated
system in order to have something to compare with later.

Let the coordinates of the Minkowskian space–time be denoted (T,X, Y, Z),
and consider a particle of constant linear acceleration—aµaµ = −g2—in this
system. Together with the usual restrictions on four velocities and accelerations,
this gives the following set of equations for the motion of the particle:

aµaµ = −g2, (2.15)

aµuµ = 0, (2.16)

uµuµ = −1. (2.17)
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Chosing X as the direction of motion, these equations may be solved for a
parametrization of the path of the particle

1 + gX = cosh(gτ), (2.18)

gT = sinh(gτ), (2.19)

where τ is the proper time of the particle. The constants of integration are chosen
to give X(τ = 0) = T (τ = 0) = 0.

We want to know how the world looks to this particle. For this reason one
may construct a coordinate system, where the particle is always at rest at origo.
For a deduction of this system, see e.g. Misner & al [12]. If the new coordinates
are denoted (t, x, y, z), the transformation between the coordinate systems is

gT = (1 + gx) sinh(gt), (2.20)

1 + gX = (1 + gx) cosh(gt), (2.21)

Y = y, (2.22)

Z = z, (2.23)

where the coordinate time t has been chosen to equal the proper time of the
accelerated particle, t = τ . In these coordinates the line element is

ds2 = (1 + gx)2dt2 − dx2 − dy2 − dz2. (2.24)

It is easy to see that a horizon resides at x = −1/g, i.e. ‘behind’ the accelerated
particle. This horizon is of the same type as the de Sitter horizon, and is caused
by the impossibility for light to travel from a point behind the horizon to the
observer in origo.

It is convenient to make yet another coordinate transformation, t̃ = gt, x̃ =
x + 1/g, which gives the standard form of the line element of the hyperbolically

accelerated system,
ds2 = x2dt2 − dx2 − dy2 − dz2, (2.25)

where the tildas have been dropped. In this system the horizon is positioned at
x = 0.

Vacuum energy in the hyperbolically accelerated system

It would be interesting to see what the energy–momentum tensor for polarized
vacuum looks like in an accelerated system. This can be obtained by applying
the transformation matrix,

Mµ
µ̂ =

∂xµ̂

∂xµ
=











(1 + gx) cosh(gt) sinh(gt) 0 0
(1 + gx) sinh(gt) cosh(gt) 0 0

0 0 1 0
0 0 0 1











(2.26)
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according to the transformation rule

Tµν = Mµ
µ̂Mν

ν̂ Tµ̂ν̂ = Mµ
µ̂Mν

ν̂ρ ηµ̂ν̂ . (2.27)

Now hatted indices denote components in the Minkowskian space–time, while the
unhatted ones denote components with respect to the hyperbolically accelerated
system. This gives

Tµν = ρ











(1 + gx)2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











= ρ gµν , (2.28)

where gµν represents the metric tensor of the hyperbolic system. This indicates
that the form of the energy–momenetum tensor is invariant under transforma-
tions involving acceleration. One should not be surprised by this result, since
every equation between tensors have to remain valid under general coordinate
transformations.

2.3 Measurements

We shall need a clear conception of which quantities are measurable in general.
Components of vectors and tensors in an arbitary frame are not so, since the
coordinate system is a way of referring to or labelling the space–time manifold.
However, every physical quantity must be measurable by an observer. An ob-
server is measuring at a predefined point of space, and he makes his measurements
with standard clocks and measuring rods, or equivalently with his tetrad consist-
ing of orthonormal vectors. His four basis vectors eµ̂ satisfies

eµ̂ · eν̂ = ηµ̂ν̂ . (2.29)

In every such local orthonormal basis field gµ̂ν̂ = ηµ̂ν̂ , whence the energy–momentum
tensor for polarized vacuum as measured by our friend reads

Tµ̂ν̂ = ρ ηµ̂ν̂ . (2.30)

According to this relation no transport of vacuum energy is possible, since T 0ı̂ =
T ı̂0 regardless of the motion of the observer. This is also indicated by the fact
that uµ disappears in the expression for T µν for a perfect fluid when the equation
of state for the polarized vacuum, p = −ρ is inserted. Later in this thesis we shall
see that a moving vacuum still might be possible because of its dragging effects.
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Measuring gravity

Consider a free particle instantaneously at rest in a static gravitational field. The
geodesic equation decomposed in an orthonormal basis field reads

ẍµ̂ + Γµ̂

κ̂λ̂
ẋκ̂ẋλ̂ = 0, (2.31)

where the dot denotes differentiation with respect to the proper time. Remember-
ing that the particle is at rest—xµ̂ = (1, 0, 0, 0)—we see that the three acceleration
due to gravity as measured by standard clocks and rods is

ẍı̂ = −Γı̂
00. (2.32)

In order to obtain an expression that does not diverge at the horizon of a black
hole, the acceleration of gravity is definded to be

κi =
√
gtt ẍ

ı̂ = −√
gtt Γı̂

00. (2.33)

Grøn has shown [13] that for a static spherically symmetric line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2 (2.34)

the gravitational acceleration is

κ ≡ κr = −1

2
e(ν−λ)/2ν ′. (2.35)

If this is inserted into Einstein’s field equations, one obtains

κ = −4π

r2

∫ r

0
(T 0

0 − T 1
1 − T 2

2 − T 3
3) e(ν+λ)/2 r2 dr ≡ −MG

r2
. (2.36)

In the Scwarzschild space–time this reduces to

κ = −M
r2
, (2.37)

or, restoring the numerical factors,

κ = −GM
r2

, (2.38)

where M is the gravitational or Schwarzschild mass of the system. This is exactly
the same form as in Newtonian theory, except that the radial coordinate r differs
from the physical radial distance.

Consider now a spherically symmetric system consisting of polarized vacuum

with T µ
ν = ρ δµ

ν . Then

T 0
0 − T 1

1 − T 2
2 − T 3

3 = −2ρ < 0, (2.39)
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which shows that there is a gravitational repulsion away from the vacuum domi-
nated region, as mentioned earlier.

An observer at rest in the hyperbolically accelerated system should also mea-
sure a gravitational force, as he is uniformly accelerated. Using the most physical
coordinates where

ds2 = (1 + gx)2dt2 − dx2 − dy2 − dz2, (2.40)

we end up at
κx = −g (2.41)

everywhere—as expected.
However, one question has to be asked: How does the last result agree with

Mach’s principle? It looks like inertial or gravitational forces may appear in gen-
eral relativity without existence of anything else than a test particle. According
to Mach’s principle we are forced to take the view that Minkowskian space–time
appears as a limit for closed universes, and that large masses exist indeed, even
though they are ‘infinitely far away.’



Chapter 3

Linear acceleration

Mach’s principle states that the inertial forces are caused by gravitational inter-
actions with the total mass of the universe. A usual way to describe his principle
is “mass/energy there gives rise to inertia here.” We have already seen that
there may indeed be an energy assosiated with vacuum. It is then natural to ask
wheather we may ascribe any Machian effects to vacuum.

We shall therefore try to describe vacuum with positive energy density, ρ, as
seen by an accelerated observer. In order to rule out the possibility that the
gravitational forces experienced by our observer are due to moving matter, it is
nessecary to have vacuum everywhere. The inertial forces experienced must then
be gravitational forces due to the motion of the vacuum relative to the observer.
It is therefore interesting to find out whether such forces exist, and what they
eventually look like. We thus want to find a solution of Einstein’s field equations
which can describe accelerated motion in a global vacuum, and which in the limit
ρ → 0 reduces to the well-known metric of a hyperbolically accelerated observer
in Minkowskian space–time:

ds2 = x2dt2 − dx2 − dy2 − dz2. (3.1)

If a solution like this exists, we would like to argue that it describes motion in an
infinitely extended vacuum, and that the forces experienced are due the relative
motion of the vacuum. It will then be the analogue to the hyperbolic metric in
a vacuum dominated space–time.

We have already seen that the components of the energy–momentum tensor
must have the form Tµν = ρ gµν (we assume a vacuum dominated universe, as
in the inflationary era), where ρ is a scalar function. In a local orthonormal
frame this gives T µ̂ν̂ = ρ ηµ̂ν̂ , and T 00 = ρ. Therefore ρ is the energy density as
measured by a local observer. The field equations of vacuum may then be written

Gµ
ν = 8πρ δµ

ν . (3.2)

Before we start solving the equations we will explore the symmetries of the
problem in order to find out something about the form of the line element.

15
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3.1 Plane symmetric line element

We shall find the properties of space–time as measured by an observer which is
moving through the vacuum with constant rest acceleration, i.e. aµaµ = −g2.
For simplicity we assume that the motion is directed along the x-axis. We shall
consider a space which admits plane symmetry, with the (y, z)-plane as symmetry
plane. The most general line element for a space like this is given by Kramer,
Stephani and Herlt [14]:

ds2 = f(x, t)dt2 − g(x, t)(dy2 + dz2) − h(x, t)dx2. (3.3)

If the vacuum itself is static, there will be no time dependence in the metric. Our
line element then takes the form

ds2 = f(x)dt2 − g(x)(dy2 + dz2) − h(x)dx2. (3.4)

The coordinate transformation dx̃ =
√

h(x) dx removes h(x) from the line ele-

ment, and after renaming x̃ 7→ x, f(x(x̃)) 7→ f(x) &c, we arrive at

ds2 = f(x)dt2 − g(x)(dy2 + dz2) − dx2, (3.5)

with only two unknown functions to deal with.
It is tempting to remove the function g(x) as well. That, however, is no

good idea: the Einstein tensor corresponding to the resulting line element has
two non-vanishing elements, namely G2

2 and G3
3. It is then impossible to solve

Gµ
ν = 8πρ δµ

ν unless ρ = 0; the case in which we are not interested. . . (If one tries
to solve the field equations with g(x) = 1 and ρ = 0 one obtains the hyperbolic
metric again.) Finally, we shall assume that the energy density of vacuum ρ is
constant.

3.2 The field equations

It seems like we have to deal with the line element (3.5) as it stands. With respect
to the local orthonormal frame

ω0 =
√

f(x) dt, (3.6)

ω1 = dx, (3.7)

ω2 =
√

g(x)dy, (3.8)

ω3 =
√

g(x)dz, (3.9)

the Einstein tensor has the non-vanishing components (computed by Cartan)

G0
0 =

g′2 − 4gg′′

4g2
, (3.10)
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G1
1 = −g

′ (2gf ′ + fg′)

fg2
, (3.11)

G2
2 = G3

3 =
g2f ′2 + g′2f 2 − fgf ′g′ − 2fg2f ′′ − 2gf 2g′′

4f 2g2
, (3.12)

where the prime denotes differentiation whith respect to x.
The first of these gives rise to the equation for g(x): G0

0 = 8πρ, or

g′2 − 4gg′′ = 32πρ g2. (3.13)

Finding g(x)

It is fascinating that this equation can be solved exactly for g(x). For, if we
agree that g(x) > 0 (in order to preserve the signature of the metric and to avoid
singularities), and assume that g′(x) 6= 0, we can multiply equation (3.13) by
3g−3/2g′/2:

−3
(

2g−1/2g′g′′ − 1

2
g−3/2g′3

)

= 32πρ
3

2
g1/2g′, (3.14)

which can be written

−3
d

dx

(

g−1/2g′2
)

= 32πρ
d

dx

(

g3/2
)

. (3.15)

We may now integrate, and if we call the constant of integration 4c1, we get

4c1 − 3g−1/2g′2 = 32πρ g3/2, (3.16)

alternatively
√

4c1
3

dx = ± g−1/4 dg
√

1 − 8πρ g3/2/c1
. (3.17)

Introducing a new variable u =
√

8πρ/c1 g
3/4 this equation takes the form

√

6πρ dx = ± du√
1 − u2

. (3.18)

Integration gives

x− c2 = ± 1√
6πρ

arcsin

(
√

8πρ

c1
g3/4

)

, (3.19)

which can be inverted to

g(x) =

(

c1
8πρ

)2/3

sin4/3
(

√

6πρ (x− c2)
)

. (3.20)

(The positive solution has been chosen in agreement with the assumption that
g(x) > 0.)
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We now have to choose the constants c1 and c2 such that this solution tends
to the metric of hyperbolic motion in the limit ρ → 0. We must therefore
demand that limρ→0 g(x) = 1. If we choose c2 = −π/(2√6πρ), i.e. g(x) =

(c1/8πρ)
2/3 cos4/3

(√
6πρx

)

, we have limρ→0 g(x) = limρ→0

√

c1/8πρ, since cosx→
1 as x→ 0. We can now choose c1 = 8πρ, and obtain

lim
ρ→0

g(x) = 1. (3.21)

Hence we have found the desired solution for g(x):

g(x) = cos4/3
(

√

6πρ x
)

. (3.22)

Finding f(x)

Having found g(x) we can use the G1
1-component of the Einstein tensor to obtain

an expression for f(x).

8πρ = G1
1 = −g

′ (2gf ′ + fg′)

fg2
(3.23)

f ′

f
= −g

′2 + 32πρ g2

2gg′
(3.24)

Substituting equation (3.13) into (3.24) leads to

f ′

f
=

2g′′

g
− g′

g
. (3.25)

Integrations gives

ln f = ln c3 + 2 ln g′ − ln g = ln

(

c3g
′2

g

)

(3.26)

⇒ f =
c3g

′2

g
, (3.27)

where c3 is a constant of integration. Inserting the solution (3.22) results in

f(x) = c3 cos−2/3
(

√

6πρ x
)

sin2
(

√

6πρx
)

. (3.28)

As ρ → 0, cos
(√

6πρx
)

→ 1 and sin
(√

6πρ x
)

→ √
6πρ x, so f(x) → 6πρ c3x

2.

If we choose c3 = 1/(6πρ), f(x) → x2 as ρ → 0, and we have found the desired
solution:

f(x) =
1

6πρ
cos−2/3

(

√

6πρx
)

sin2
(

√

6πρx
)

. (3.29)

which is valid for 0 <
√

6πρ x < π/2.
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3.3 Discussion

We have now found a solution of the field equations of vacuum (3.2), which
reduces to the hyperbolic metric as ρ→ 0. The solution can be written

ds2 =
1

6πρ
cos−2/3

(

√

6πρ x
)

sin2
(

√

6πρ x
)

dt2 (3.30)

− cos4/3
(

√

6πρ x
)

(dy2 + dz2) − dx2.

It is valid for 0 <
√

6πρx < π/2. It follows by verification that it is also a solution
of the two remaining equations corresponding to G2

2 and G3
3.

Since we have found a solution of Gµν = 8πρ gµν it is natural to ask whether
we have obtained an alternate form of the de Sitter metric, which is a solution of
Gµν = Λgµν . (In which case we must have 8πρ = Λ.) It turns out that this is not
the case: Cartan tells us that the Weyl invariant corresponding to our soluion
is

CκλµνCκλµν =
256 π2ρ2

3 cos
(√

6πρ x
) , (3.31)

whereas the Weyl invariant of the de Sitter metric vanishes.
To find out whether the solution (3.30) really describes an observer with

constant rest acceleration we can calculate the acceleration of gravity he measures.
Following the procedures given earlier one obtains

κx = −1

3

(

cos−4/3
(

√

6πρ x
)

+ 2 cos2/3
(

√

6πρx
))

, (3.32)

κy = κz = 0. (3.33)

Thus the measured acceleration of gravity is not constant through the space. This
indicates either that our observer does not travel with constant rest acceleration
(as we demanded), or that we don’t operate in a global vacuum (an observer
with constant rest acceleration in empty, global vacuum should certanly measure
a constant acceleration according to the principle of equivalence).

It turns out that the last of these solutions is the right one. The solution
has been mentioned before without deductions, and it has been pointed out by
Novotný [15], Novotný and Horský [16] and Amundsen and Grøn [17] that it
describes the spacetime outside a massive plane. Anyway we have given a new
deduction of it from the supposed plane symmetry and non-vanishing energy
density (acting as a cosmological constant).

If we, instead of choosing c2 as we did, had chosen c2 = 0, and g(x) =
sin4/3(

√
6πρx), we would obtain the alternate form of the line element

ds2 =
1

6πρ
sin−2/3

(

√

6πρ x
)

cos2
(

√

6πρ x
)

dt2 (3.34)

− sin4/3
(

√

6πρx
)

(dy2 + dz2) − dx2.
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This and the earlier result can both be derived from the generalized Taub solution
(see Novotný [15])

ds2 =
1 − 8πρ ξ3/3

ξ
dη2 − ξ

1 − 8πρ ξ3/3
dξ2 − ξ2(dy2 + dz2), (3.35)

by the coordinate transformations

ξ = A sin2/3
(

√

6πρ x
)

, (3.36)

and ξ = A cos2/3
(

√

6πρ x
)

, (3.37)

respectively. Here A is a well-chosen constant, and η is a rescaled version of t.
Our solution describes the part of the generalized Taub solution where 0 < ξ < A.

We should feel a great relief that we have approached a “wrong” solution. If
this was the right one we would have been in serious trouble indeed. First of all the
locally measured acceleration of gravity is not constant through the space. More
serious is the resulting contradiction to Mach’s principle: The observer measures
gravity, while the energy–momentum tensor shows no signs of a moving vacuum
since it is, by hypothesis, diagonal like the metric tensor. Physically this means
that no energy transport is associated with the vacuum. The observer is then
in a sense stationary with respect to it. Then, according to Mach, there should
be no forces of inertia. But the observer experiences forces! If he was positioned
in a space with vacuum everywhere these forces could not be of a gravitational
nature; they would have to be inertial forces. The inertial forces would then exist
without any interaction with the surrounding world, which is exacly what Mach’s
principle states as impossible.

We are thus saved by the massive plane. However it leaves another question
for us: What went wrong? The mathematical deduction of the solution is clearly
correct, so the error must appear in the guesses we made on the form of the line
element. These were ‘diagonal metric’ and ‘static vacuum.’ Both seem to fail.
If the metric is diagonal, there can be no transport of energy assosiated with
the vacuum (since T 0i = 0). A more realistic attempt would be to introduce
an additional term proportional to dx dt in the line element. We have assumed
a global static vacuum with non-vanishing energy density ρ. Since the energy
density acts as a cosmological constant, our solution must be an accelerated
version of an empty-space solution with a such constant present. These solutions
describe expanding universes, and we understand that it was too optimistic to
hope for a static solution.
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Rotating shells

In the previous chapter we tried to describe how a vacuum-dominated universe
looked to an accelerated observer. The conclusion was that we failed. Linear
acceleration seems difficult to work with. It is however a well-known fact that
rotation as well as linear acceleration gives rise to inertial forces. So, instead of
looking for an analogue to the hyperbolic metric in a vacuum-dominated universe,
we might try to find an analogue to Newton’s vessel.

General relativistic attempts have been made toward this before in the case
where ρ = 0. We have already mentioned the result of Lense and Thirring. They
considered space–time outside and inside a slowly rotating shell in the weak field
approximation of the field equations. In 1966 Brill & Cohen [18] carried out a
calculation of the same problem without assuming a weak gravitational field, and
two years later they generalised their result to incompressible fluid spheres [19].
Here we shall go through their calculations, using a slightly different approach,
since we shall need their techniques later.

Until now nobody has considered how polarized vacuum is affected by rotating
matter. After reproducing the result of Brill & Cohen, we shall use the same
strategy to try to find a solution when there is a constant positive energy density
ρ and stress p = −ρ in the interior of the shell. It turns out that we must
then introduce some serious restrictions in order to be able to carry out the
calculations. Afterwards we show how one may avoid this problem by means of
Israel’s formalism [20] for surface layers. In this way we obtain a general result,
which can be checked out against the result of Brill & Cohen, the well-known
result of Lense & Thirring, and the special case considered in section 2 of this
chapter.

4.1 Brill & Cohen’s rotating “vessel”

In their article of 1966 Brill & Cohen take a thin spherical shell as their model
for Newton’s vessel. If there is no vacuum energy outside the shell, the theorem

21
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of Birkhoff [21] tells us that we must have Schwarzschild space–time outside the
shell when it is not rotating. Inside the shell space–time is Minkowskian. To
obtain the simplest mathematical treatment of the problem, we shall adopt the
use of isotropic coordinates for the Schwarzschild geometry. In these coordinates
the Schwarzschild line element reads

ds2 =

(

r̃ −M/2

r̃ +M/2

)

dt2 −
(

1 +
M

2r̃

)4
(

dr̃2 + r̃2(dϑ2 + sin2ϑdϕ2)
)

, (4.1)

where M is the gravitational mass of the shell. The isotropic radial coordinate r̃ is
connected to the standard Schwarzschild radial coordinate via the transformation

r = r̃
(

1 − M

2r̃

)2

⇔ 2r̃ =
√
r2 − 2Mr + r −M, (4.2)

hence the event horizon at r = 2M in standard Schwarzschild coordinates resides
at r̃ = M/2 in isotropic coordinates.

The other coordinates have the same meaning as the Schwarzschild ones. If
the shell is positioned at r̃ = r̃0, and the geometry is flat (i.e. Minkowskian) in
its interior, the line element can be written on the compact form

ds2 = V 2dt2 − ψ4
(

dr̃2 + r̃2(dϑ2 + sin2ϑdϕ2)
)

, (4.3)

with

V =

{

(r̃ − α)/(r̃ + α) for r̃ > r̃0
(r̃0 − α)/(r̃0 + α) ≡ V0 for r̃ < r̃0

, (4.4)

ψ =

{

1 + α/r̃ for r̃ > r̃0
1 + α/r̃0 ≡ ψ0 for r̃ < r̃0

, (4.5)

where the convenient notation α = M/2 has been introduced. The constants V0

and ψ0 assure continuity of the metric tensor across the shell.
If the shell is not static, but slowly rotating with angular velocity ωs (s sug-

gests “shell”) in the ϕ direction, the rotation can be included in the line element
as a perturbation on the static metric (as suggested by Thirring’s weak field
result):

ds2 = V 2dt2 − ψ4
(

dr̃2 + r̃2(dϑ2 + sin2ϑ(dϕ− Ω(r̃)dt)2)
)

, (4.6)

with V and ψ unaltered. The function Ω(r) represents the dragging of the inertial
frames which can be measured by a compass of inertia—exactly what we want
to find. In the weak field approximation it must be constant inside the shell, as
showed by Lense and Thirring. In order to avoid inconsistency with the static
case, we demand that Ω = 0 when ωs = 0. We should also always have Ω ≤ ωs,
since the induced dragging velocity never can be faster than that of the dragging
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shell. All calculations will be carried out to first order in ωs. Since Ω ≤ ωs, we
will also neglect higher order terms in Ω. For simplicity we shall also assume
that Ω varies slowly with r̃, and consequently neglect higher order terms in its
derivatives as well.

A convenient local orthonormal frame is

ω0 = V dt, (4.7)

ω1 = ψ2dr̃, (4.8)

ω2 = r̃ψ2dϑ, (4.9)

ω3 = r̃ψ2 sin ϑ(dϕ− Ωdt). (4.10)

In this frame the components of the Einstein tensor corresponding to the line
element (4.3) (given by Cartan) to first order in ωs, Ω and its derivatives are

G00 = −4(2ψ′ + r̃ψ′′)

r̃ψ5
, (4.11)

G11 =
2(2ψV ψ′ + 2r̃V ψ′2 + ψ2V ′ + 2r̃ψψ′V ′)

r̃ψ6V
, (4.12)

G22 = G33 =
2ψV ψ′ − 2r̃V ψ′2 + ψ2V ′ + 2r̃ψV ψ′′ + r̃ψ2V ′′

r̃ψ6V
, (4.13)

G03 = G30 =
sin ϑ

2ψ3V 2
(−4ψVΩ′ − 6r̃V Ω′ψ′ + r̃ψΩ′V ′ − r̃ψVΩ′′), (4.14)

where the primes denote differentiation with respect to r̃. We notice that to first
order in ωs the diagonal components of the Einstein tensor are unaffected by the
rotation. Into these expressions we must insert the known functions ψ, V and
their derivatives, which are

ψ′ = − α

r̃2
θ(r̃ − r̃0), (4.15)

ψ′′ =
2α

r̃3
θ(r̃ − r̃0) −

α

r̃2
δ(r̃ − r̃0), (4.16)

V ′ =
2α

(r̃ + α)2
θ(r̃ − r̃0), (4.17)

V ′′ = − 4α

(r̃ + α)3
θ(r̃ − r̃0) +

2α

(r̃ + α)2
δ(r̃ − r̃0). (4.18)

Here θ(r) is the step function, and δ(r) is the Dirac delta function.
Because the shell is positioned in a vacuum with vanishing energy density ρ,

we know that T µ̂ν̂ = 0 everywhere, with a possible exception at the shell. We
shall now integrate the field equations across the shell in order to find T µ̂ν̂ there.
Introduce the notation

∫

A ≡ lim
ε→0

∫ r̃0+ε

r̃0−ε
A(r) dr. (4.19)
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When evaluating integrals like this, only the terms containing a delta function—
which happens to be exactly those containing second derivatives of ψ and V—will
contribute. We start with the 00-component of the energy–momentum tensor
which must equal σ, the rest mass density of the shell, since we are operating in
a local orthonormal frame:

8π
∫

T 00 =
∫

G00 = −4
∫

ψ′′

ψ5
= 4α

∫

δ(r − r0)

r2ψ5
=

4α

r̃2
0ψ

5
0

. (4.20)

Since T µν = 0 everywhere except on the shell, this means that

σ = T 00 =
α δ(r̃ − r̃0)

2πr̃2ψ5
. (4.21)

Taking a closer look at G11 we notice that it only contains first derivatives of
ψ and V . Consequently, T 11 = 0 at the shell as well as elsewhere, meaning that
there are no radial stresses in the shell. Together with the tangential stresses,
this causes the shell to be stationary.

Integrating G22 across the shell yields

8π
∫

T 22 =
∫

G22

=
∫

(

2ψ′′

ψ2
+

V ′′

ψ4V

)

= − 2α

r̃2
0ψ

5
0

+
2α

(r̃0 + α)2ψ4
0V0

(4.22)

=
α

2(r̃0 − α)

4α

r̃2
0ψ

5
0

=
α

2(r̃0 − α)
8π
∫

T 00,

which shows that
T 22 = T 33 =

σα

2(r̃0 − α)
≡ σβ. (4.23)

We have now found the diagonal components of the energy–momentum tensor
at the shell. To find a useful expression for the 03-component, we must first use
the field equations outside and inside the shell to find out something about the
induced rotation, Ω(r̃).

The induced rotation

We have already stated that T µ̂ν̂ = 0 outside and inside the shell, so the remaining
field equation reads G03 = 0. This equation can be integrated for Ω(r̃). First we
notice that G03 may be written as

G03 = − sin ϑ

2r̃3ψ8

(

r4ψ6Ω′

V

)′

(4.24)
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so that the corresponding field equation is

(

(r̃ψ2)4Ω′

V ψ2

)′

= 0, (4.25)

for r̃ 6= r̃0. Integration results in

Ω′ =
KV ψ2

(r̃ψ2)4
, (4.26)

where K is a constant of integration.
Inside the shell both ψ and V are constant, so Ω′ ∼ 1/r4. Hence Ω = A/r3 +

ΩB, where A and ΩB are constants (B suggests ‘Brill & Cohen’ as there shall be
several versions of this constant later). However, the solution must be regular
in origo, and we have to choose A = 0. The result—that Ω = ΩB inside the
shell—closely resembles that of Lense and Thirring. It remains to see whether
they are of same magnitude.

For r̃ > r̃0 we can insert the expressions for ψ and V and integrate. This
results in

Ω = − K

3(r̃ψ2)3
+B, (4.27)

where B is another constant of integration. If we choose B = 0, we obtain
limr̃→∞ Ω(r̃) = 0. This is a natural choice, since an observer at infintity then is
non-rotating. Furthermore, Ω(r̃) describes a local rotation of the inertial frames
with respect to a non-rotating stationary observer at infinity.

Continuity across the shell requires

ΩB = − K

3(r̃0ψ
2
0)

3
. (4.28)

Inserting this value of K into the expression for Ω gives

Ω(r̃) =











ΩB

(

r̃0ψ
2
0

r̃ψ2

)3

, r̃ > r̃0.

ΩB, r̃ < r̃0.

(4.29)

It remains to determine the value of ΩB. It should indeed be related to the
rotation of the shell, ωs, in some way. To figure this out, we must integrate the
remaining field equation across the shell. We will then need the first and second
derivatives of Ω(r̃):

Ω′ = −3ΩB(r̃0ψ
2
0)

3ψ2

(rψ2)4
θ(r̃ − r̃0), (4.30)

Ω′′ = −
(

3ΩB(r̃0ψ
2
0)

3ψ2

(rψ2)4

)′

θ(r̃ − r̃0) −
3ΩB(r̃0ψ

2
0)

3ψ2

(rψ2)4
δ(r̃ − r̃0). (4.31)
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Taking a look at G03 we see that only the delta function will contribute to T 03

of the shell:

8π
∫

T 03 =
∫

G03 = −
∫ rψV Ω′′ sinϑ

2ψ3V 2
=

3ΩB sinϑ

2ψ2
0

. (4.32)

We now have the following information regarding the energy–momentum ten-
sor for the shell:

T 00 = σ, (4.33)

T 11 = 0, (4.34)

T 22 = T 33 = σβ, (4.35)

8π
∫

T 03 = 8π
∫

T 30 =
3ΩB sinϑ

2ψ2
0

. (4.36)

The left hand side of this equation will now be calculated in terms of the
angular velocity of the shell. If the shell consisted of dust, the energy–momentum
tensor would be T µν = σuµuν , where σ is again the rest mass density, and uµ is
the velocity four vector. In our case the shell is capable of having stresses as well.
The energy–momentum tensor in a local orthonormal frame must then have the
form

T µ̂ν̂ = σuµ̂uν̂ +
3
∑

i,j=1

tijv(i)
µ̂v(j)

ν̂ , (4.37)

where the v(i)
µ̂ form a triad of orthonormal vectors spanning the hypersurface

orthogonal to uµ̂. T µ̂ν̂ must have this form because in the rest frame of the
matter the momentum density T 0i should vanish. Also tij must be diagonal in
order to make T µ̂ν̂ symmetric about the equatorial plane and with respect to time
reversal.

We shall now calculate the components of uµ̂ in the local orthonormal frame
given above, and then construct a set of vectors v(i)

µ̂ with the wanted properties.
In a coordinate frame the components of uµ are given by uµ = dxµ/dτ . Trans-
forming this to the local orthonormal frame (4.7–4.10) gives uµ̂ = M µ̂

µu
µ, where

ωµ̂ = M µ̂
µdx

µ. Hence the velocity four vector may be written symbolically as

uµ̂ =
ωµ̂

dτ
(4.38)

in the local orthonormal frame. We have introduced the notation ωµ̂ = M µ̂
µdxµ.

For the shell we have dr̃ = dϑ = 0, dϕ/dt = ωs and dτ =
√

V 2dt2 − ψ4r̃2 sin2ϑ(dϕ− Ω(r)dt)2 ,
whence

u0 = (1 − λ2)−1/2, (4.39)

u1 = 0, (4.40)

u2 = 0, (4.41)

u3 = λ(1 − λ2)−1/2, (4.42)
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with λ = r̃ψ2 sinϑ(ωs − Ω)/V . Writing this as

uµ̂ = (1, 0, 0, λ)/
√

1 − λ2, (4.43)

it is easy to see that the vectors v(i)
µ̂ may be chosen as

v(1)
µ̂ = (0, 1, 0, 0), (4.44)

v(2)
µ̂ = (0, 0, 1, 0), (4.45)

v(3)
µ̂ = (λ, 0, 0, 1)/

√
1 − λ2 . (4.46)

Inserting these vectors into the general expression for the energy–momentum
tensor, using that tij is diagonal gives, correct to first order in ωs (and hence also
in Ω, its derivatives and λ)

T 00 = σ, (4.47)

T 11 = t11, (4.48)

T 22 = t22, (4.49)

T 33 = t33, (4.50)

T 03 = T 30 = (σ + t33)λ. (4.51)

Comparing the expressions (4.47–4.50) with the previous result, equations (4.33–
4.35), we see that

t11 = 0, (4.52)

t22 = t33 = σβ. (4.53)

This can be inserted into (4.51), which in turn can be integrated through the
shell. This gives

8π
∫

T 03 = 8π
∫

σλ(1 + β) =
4α

r̃0ψ3
0V0

(1 + β)(ωs − ΩB) sinϑ, (4.54)

where the expression for σ, equation (4.21), has been inserted. Finally, this result
can be inserted into (4.36) and solved for ΩB. This gives the result of Brill and
Cohen:

ΩB =
ωs

1 +
3(r̃0 − α)

4M(1 + β)

, (4.55)

which can also be writen

ΩB

ωs
=

(

1 +
3

4M

(r̃0 −M/2)2

r̃0 −M/4

)−1

. (4.56)
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This result has a couple of interesting properties. First of all it reduces to the
well-known result of Lense and Thirring if we restrict ourselves to the weak field
limit. Formally, this can be done by letting α→ 0, which gives

ΩB =
4Mωs

3r̃0
. (4.57)

We also observe that perfect dragging, i.e. ΩB = ωs—the induced rotation inside
the shell equals the rotation of the shell—is possible. It occurs if the shell is
positioned at its Schwarzschild radius, r̃0 = α. A shell of matter of radius equal
to its Schwarzschild radius has been taken as an idealized cosmological model of
our universe. This result shows that in such a model there cannot be a rotation
of the local inertial frames relative to the large masses in the universe. This was
pointed out by Brill and Cohen. However, in the limit r̃0 → α the shell becomes
rather unphysical. As we shall see later using Israel’s formalism, the stresses on
the shell diverge, which indicates that the model has to be changed.

4.2 Rotating shell containing polarized vacuum

The previous section showed us how the local inertial frames are affected by a
nearby rotating mass: there are indeed Machian effects associated with it. Since
vacuum—as well as mass—may contain energy, we would like to find a similar
dragging effect if the vacuum itself rotates.

Consider a spherical “ball” consisting of polarized vacuum with positive en-
ergy density ρ and stress p = −ρ. We want this situation to be stationary, whence
the boundary of the “ball” has to exhibit certain properties. This boundary may
be seen as a shell with polarized vacuum where Tµν = ρgµν in its interior, and
unpolarized vacuum with Tµν = 0 outside. According to Birkhoff’s theorem the
space–time outside a spherical symmetric constellation of mass or energy is of
Schwarzschild type. Inside we should have the usual de Sitter space–time.

The shell or boundary is now assumed to rotate slowly, with angular velocity
ωs. As before the effect of this rotation is introduced as a perturbation Ω(r) of
the static metric. The metric now reads

ds2 = f(r)dt2 − dr2

f(r)
− r2

(

dϑ2 + sin2ϑ(dϕ− Ω(r)dt)2
)

, (4.58)

where f(r) =

{

1 − 2M/r for r > r0
1 − 8πρr2/3 for r < r0

, (4.59)

when the standard Schwarzschild and static de Sitter coordinates are used. We
now want to carry out the same calculations as in the previous section for this
situation. To make this possible, we must demand that the metric tensor is
continous across the shell (this was automatically satisfied before). This requires
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the relation

r0 =

(

3M

4πρ

)1/3

(4.60)

to be satisfied. As we shall see later, this is an extremely special case—we are
not allowed to put the shell anywhere. Let us carry out the calculations anyway.

As before we start with extracting as much information as possible out of the
field equation in a local orthonormal frame. A convenient frame is

ω0 =
√

f(r)dt, (4.61)

ω1 =
dr

√

f(r)
, (4.62)

ω2 = r dϑ, (4.63)

ω3 = r sin ϑ (dϕ− Ω(r)dt) . (4.64)

In this frame the non-vanishing components of the Einstein tensor to first order
in Ω and its derivatives are (again as given by Cartan):

G00 = −G11 =
1 − f − rf ′

r2
, (4.65)

G22 = G33 =
2f ′ + rf ′′

2r
, (4.66)

G03 = G30 = −1

2

(

√

f sinϑ(4Ω′ + rΩ′′)
)

. (4.67)

The derivatives of the function f(r) are

f ′(r) =
2M

r2
θ(r − r0) −

16πρr

3
θ(r0 − r), (4.68)

f ′′(r) = −4M

r3
θ(r − r0) −

16πρ

3
θ(r0 − r) +

(

2M

r2
+

16πρr

3

)

δ(r − r0).(4.69)

When integrating the field equations across the shell using integrations like (4.19),
only the delta functions contribute, hence only the second derivative of f(r).
Therefore

8π
∫

T 00 =
∫

G00 = 0, (4.70)

8π
∫

T 11 =
∫

G11 = 0. (4.71)

This means that T 00 = 0 at the shell as well as outside of it: the shell has no rest
mass! It must therefore be seen only as a boundary of the polarized vacuum ball,
not as a physical shell. Integrating the two remaining diagonal equations yields

8π
∫

T 22 =
∫

G22 =
M

r2
0

+
8πρr0

3
=

3M

r2
0

, (4.72)

8π
∫

T 33 =
∫

G33 =
M

r2
0

+
8πρr0

3
=

3M

r2
0

, (4.73)
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which means that T 22 = T 33 = 3Mδ(r − r0)/(8πr
2) at the shell. Hence, the

shell has no rest mass, but is capable of having stresses. If this shall not be
completely foolish, the stresses must be seen as surface tensions belonging to the
boundary between the empty space and the vacuum dominated region. We shall
now integrate the remaining equation in order to obtain an expression for the
induced rotation, Ω(r).

The induced rotation

The last field equation reads G03 = 0, or

−1

2

(

√

f sinϑ(4Ω′ + rΩ′′)
)

= 0. (4.74)

Since neither f(r) nor sin ϑ equals zero everywhere, this requires

4Ω′ + rΩ′′ = 0. (4.75)

The general solution of this equation is Ω = A/r3 + B, where A and B are
constants of integration. The solution must be regular everywhere. Therefore
A = 0 and Ω = Ω0 for r < r0—as before. The same argument as earlier requires
B = 0 for r > r0. Demanding continuity of Ω across the shell, we end up with

Ω =

{

Ω0(r0/r)
3 for r > r0

Ω0 for r < r0
(4.76)

—a result which closely resembles that of Brill and Cohen, equation (4.29).
In order to find the constant Ω0, we must go through the same procedure as

in the Brill and Cohen case. Inserting Ω and its derivatives,

Ω′ = −3Ω0r
3
0

r4
θ(r − r0), (4.77)

Ω′′ =
12Ω0r

3
0

r5
θ(r − r0) −

3Ω0r
3
0

r4
δ(r − r0), (4.78)

into G03 and integrating through the shell gives

8π
∫

T 03 =
∫

G03 =
3

2
Ω0 sinϑ

√

f(r0), (4.79)

where f(r0) = 1 − 2M/r0 = 1 − 8πρr2
0/3.

We shall now calculate the left hand side of this equation as we did in the Brill
and Cohen case. Like before, the tensor may be written as in equation (4.37),
with the same restrictions on tij . This time the components of the velocity four
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vector of the shell are

u0 =
ω0

dτ
=

√

f(r)
√

f(r) − λ2
, (4.80)

u1 =
ω1

dτ
= 0, (4.81)

u2 =
ω2

dτ
= 0, (4.82)

u3 =
ω3

dτ
=

λ
√

f(r) − λ2
, (4.83)

where we have introduced λ = r sin ϑ(ωs − Ω) and ωs = dϕ/dt at the shell.
Writing this as

uµ̂ = (
√

f(r), 0, 0, λ)/
√

f(r) − λ2, (4.84)

it is again easy to see how the vectors v(i)
µ̂ may be chosen:

v(1)
µ̂ = (0, 1, 0, 0), (4.85)

v(2)
µ̂ = (0, 0, 1, 0), (4.86)

v(3)
µ̂ = (λ, 0, 0,

√

f(r))/
√

f(r) − λ2. (4.87)

Inserting these into the expression for T µ̂ν̂ gives, correct to first order in ωs

(and hence also in λ)

T 00 = σ, (4.88)

T 11 = t11, (4.89)

T 22 = t22, (4.90)

T 33 = t33, (4.91)

T 03 = T 30 = (σ + t33)
λ

√

f(r)
. (4.92)

If we compare this with the previous results, we see that σ = t11 = 0 and
t22 = t33 = 3Mδ(r − r0)/(8πr

2). Inserting this into T 03 and integrating through
the shell gives

8π
∫

T 03 = 8π
∫ t33λ
√

f(r)
=

3M(ωs − Ω0) sinϑ

r0
√

f(r0)
. (4.93)

Inserting this into equation (4.79), gives

Ω0 =
ωs

1 + r0f(r0)/2M
= ωs

2M

r0
. (4.94)
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This seems to be a very nice result. Is it compatible with the result of Brill and
Cohen? We will not be able to answer that question, because of the restriction we
have made on the position of the shell. We demanded that the shall was placed
at r0 = (3M/(4πρ))1/3. If we try to find the limit ρ→ 0, i.e. the case considered
by Brill and Cohen, the shell will disappear as well: r0 → ∞ and Ω0 → 0. All
interesting properties vanish.

We also see that perfect dragging appears if we put the shell at its Schwarzschild
radius. However this leads to diverging stresses, as we shall se later. There are
three serious problems with our solution:

1. We have a strong restriction on the radius of the shell.

2. It is not possible to take the limit ρ→ 0 without removing the shell.

3. The shell has no rest mass.

Later we shall find a more general solution for a rotating ball of polarized vacuum,
which solves these problems, and which has the wanted properties. This will be
possible using Israel’s formalism for surface layers.

4.3 Israel’s formalism

The attempts we made on describing a thin rotating shell in the previous section
were not succesful to the wanted degree. It is possible to obtain a far better result
using Israel’s formalism for thin surfaces, developed in 1965 [20]. The reader is
not expected to be familiar with this formalism, so before we start using it, I
will summarize—without deductions—the parts of the formalism which will be
of importance for us. Hence, we shall not consider the most general aspects of
the theory.

Consider a space–time manifold denoted V . In this manifold there exists
a space-like hypersurface Σ dividing the manifold into two parts, denoted V +

and V −. For these regions of the manifold we choose coordinates xµ
+ and xµ

−

respectively. The corresponding line elements are

ds2
±

= g±µνdx
µ
±dxν

±
. (4.95)

Because the hypersurface Σ is the common boundary of V + and V −, it must
be possible to find a parametrization for it in both systems, using the same
parameters. We shall call these parameters ξi, where i = 1, 2, 3, and they will act
as coordinates for the surface. From now on we are going to use Latin indices to
denote components with respect to the hypersurface coordinates ξi, and Greek
indices for the usual manifold components. The parametrization of Σ may be
written

xµ
± = xµ

±(ξi). (4.96)
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The line element of the shell must be independent of whether it is seen as the
boundary of V + or V −. This is usually stated as “the line element belonging
to the two parts of the manifold must induce the same intrinsic metric on Σ.”
When viewed as the boundary of V +, the intrinsic metric is

ds2
Σ =

[

g+
µνdx

µ
+dxν

+

]

xµ
+=xµ

+(ξi)
= g+

µν

∂xµ
+

∂ξi

∂xν
+

∂ξj
dξidξj, (4.97)

whereas it is

ds2
Σ = g−µν

∂xµ
−

∂ξi

∂xν
−

∂ξj
dξidξj (4.98)

when viewed as the boundary of V −. The two expressions must be equal, whence

ds2
Σ = gijdξ

idξj, (4.99)

where

gij ≡ g+
µν

∂xµ
+

∂ξi

∂xν
+

∂ξj
= g−µν

∂xµ
−

∂ξi

∂xν
−

∂ξj
(4.100)

are the components of the induced metric tensor on Σ with respect to the surface
coordinates ξi.

Energy–momentum tensor on Σ

Let nµ denote the unit normal of Σ, directed from V − to V +. The covariant
derivative of this vector using the intrinsic coordinates, ξi, describes the way Σ
curves in V . It is therefore natural to introduce the extrinsic curvature tensor

Kij = −ni;j = −ni,j + nkΓ
k
ij , (4.101)

where Γk
ij are the Christoffel symbols assosiated with the intrinsic metric of Σ.

The curvature tensor is not necessarily the same on the two sides of the surface.
Let K+

ij denote the value of Kij in V +, and K−

ij its value in V −. Introduce
K± = gijK±

ij and

[Kij ] = K+
ij −K−

ij , (4.102)

[K] = K+ −K−. (4.103)

According to Israel, the energy–momentum tensor of the shell is

Sij = − 1

8π
([Kij ] − gij[K]), (4.104)

or

Si
j = − 1

8π
([Ki

j] − δi
j [K]). (4.105)
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The components Si
j may be arranged as a matrix, whoose eigenvalues λ(k) (the

index in parenthesis is only a tag and does not denote the component of any
vector) may be found from solving

|Si
j − δi

jλ(k)| = 0, (4.106)

where |A| denotes the determinant of A. The three corresponding orthogonal
eigenvectors, v(k)

i—one time-like, two space-like are given by

Si
jv(k)

j = λ(k)v(k)
i. (4.107)

From now on we demand that the eigenvectors are normalized. Since they are
orthogonal, they form a basis triad for the hypersurface. The time-like eigenvector
is in fact the velocity four vector of the hypersurface—denoted ui—whence the
eigenvectors form an orthonormal comoving basis.

The eigenvalue corresponding to the time-like eigenvector is the proper energy
density of the surface, σ. The two remaining eigenvalues represent the negative
of the stresses in directions given by the corresponding eigenvectors:

λui = σ, (4.108)

λv(k)
i = −p(k), where k = 1, 2. (4.109)

It has been showed by Lichnerowicz that the energy–momentum tensor of the
surface in this notation may be written as

Sij = σuiuj +
2
∑

k=1

p(k)v(k)
iv(k)

j . (4.110)

4.4 The rotating shell revisited

We are now ready to use Israel’s formalism to describe the rotating spherical
shell containing polarized vacuum. In this situation we let Σ denote the shell,
V + the region of the space–time outside the shell, V − its interior, and ωs the
coordinate angular velocity of the shell. The induced rotation will be found using
the following 5-step procedure:

1. Find suitable coordinates and calculate the extrinsic and intrinsic metric
tensors.

2. Use the field equations to find out as much as possible about the induced
rotation, Ω.

3. Find the energy–momentum tensor for the shell, Sij, as given by Israel’s
formalism.
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4. Use the formula (4.110) to find an expression for Sij containing ωs.

5. The results of steps 3 and 4 must be equal. Comparing them, we will
find the rest mass density of the shell σ, the stresses p(k), and the relation
between the rotation of the shell ωs, and the induced rotation Ω.

As before, the calculations will be carried out to first order in ωs.

4.4.1 Coordinates and metrics

The situation is exactly the same as earlier. Consider first the non-rotating
case. In V + there is Schwarzschild space–time, and if we use t, r, ϑ and ϕ as
coordinates, the line element is

ds2
+ = (1 − 2M/r)dt2 − dr2

1 − 2M/r
− r2(dϑ2 + sin2ϑ dϕ2), (4.111)

where M is the gravitational mass of the spherically symmetric system. In these
coordinates the radial position of the shell is r = r0, and the region V + corre-
sponds to r > r0. The other ‘half’ of the space–time—the region V −—is described
by the de Sitter metric. In this region we use coordinates T , R, Θ and Φ, which
so far are unrelated to the coordinates of V +. The metric of V − is

ds2
−

= (1 − 8πρR2/3)dT 2 − dR2

1 − 8πρR2/3
−R2(dΘ2 + sin2Θ dΦ2), (4.112)

and is valid for R < R0, where R0 is the position of the shell as described from
V −.

There are plenty of possible choices for coordinates on the shell. Two of them
are more natural than the others: We may choose t, ϑ and ϕ, or T , Θ and Φ.
This gives two different versions of the intrinsic metric on Σ,

ds2
Σ−

= (1 − 8πρR2
0)dT

2 − R2
0(dΘ2 + sin2Θ dΦ2), (4.113)

ds2
Σ+ = (1 − 2M/r0)dt

2 − r2
0(dϑ

2 + sin2ϑ dϕ2). (4.114)

These are the line elements of the same surface, hence they must be equal. This
indicates that we can choose the following relation between the outer and inner
coordinates:

R0 = r0, (4.115)

Θ = ϑ, (4.116)

Φ = ϕ, (4.117)

T =

√

√

√

√

1 − 2M/r0
1 − 8πρr2

0/3
t ≡

√
a t. (4.118)
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Since R = r = r0 at the shell, we can take them to be equal everywhere without
loss of generality. We have now found a set of coordinates which covers both V +

and V −.
Like before, the possibility of a rotating shell may be inserted into the line

element as an additional function, Ω(r). We put the same restrictions on Ω as
before. Hence the line element of our space–time with a slowly rotating shell is

ds2 = g(r)dt2 − dr2

f(r)
− r2

(

dϑ2 + sin2ϑ(dϕ− Ω(r)dt)2
)

, (4.119)

f(r) =

{

1 − 8πρr2/3 for r < r0
1 − 2M/r for r > r0

, (4.120)

g(r) =

{

a(1 − 8πρr2/3) for r < r0
1 − 2M/r for r > r0

, (4.121)

a =
1 − 2M/r0
1 − 8πρr2

0/3
, (4.122)

which gives the induced metric at Σ:

ds2
Σ = (1 − 2M/r0)dt

2 − r2
0

(

dϑ2 + sin2ϑ(dϕ− Ω(r0)dt)
2
)

(4.123)

when t, ϑ and ϕ are used as coordinates on the shell.
For convenience, we introduce the short hand notation

βD =

√

1 − 8πρr2

3
, (4.124)

βS =

√

1 − 2M

r
. (4.125)

Here D suggests ‘de Sitter,’ and S ‘Schwarzschild.’ We shall also use βD0 and
βS0 for the values of βD and βS at r = r0, respectively.

4.4.2 The induced rotation

To find out something about the induced rotation, we start with setting up the
field equations corresponding to the line element (4.119). A convenient local
orthonormal frame is

ω0 =
√

g(r)dt, (4.126)

ω1 =
dr

√

f(r)
, (4.127)

ω2 = r dϑ, (4.128)

ω3 = r sin ϑ(dϕ− Ω(r)dt). (4.129)
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In this frame, Cartan tells us that the components of the Einstein tensor to first
order in ωs, Ω and its derivatives are

G00 =
1 − f − rf ′

r2
, (4.130)

G11 =
f − 1

r2
+
fg′

rg
, (4.131)

G22 = G33 =
2g2f ′ + 2fgg′ + rgf ′g′ − rfg′2 − 2rfgg′′

4rg2
, (4.132)

G03 = G30 =
sin ϑ

4g3/2
(−8fgΩ′ − rgf ′Ω′ + rfg′Ω′ − 2rfgΩ′′). (4.133)

Like before, the diagonal components of the Einstein tensor are unaffected by the
rotation. The non-diagonal component gives us an equation for Ω: G03 = 0. We
notice that f(r) = Ag(r), where A = 1 for r > r0 and A = a for r < r0. The
equation therefore reduces to

4Ω′ + rΩ′′ = 0 (4.134)

in both V + and V −. We have seen this equation before (4.75), and still the
solution is

Ω =

{

ΩP (r0/r)
3 for r > r0

ΩP for r < r0
, (4.135)

when we demand nice behavior at r = 0 and r = ∞ and continuity across the
shell. ΩP is a constant of integration, and P suggests ‘polarized vacuum,’ in order
to distinguish it from the case considered by Brill & Cohen. The result from the
last section was more general than we could expect. However, the value of ΩP

will depend on the radial position of the shell, which was fixed in the previous
section.

4.4.3 The shell described using Israel’s formalism

Knowing the metric tensor of the space–time manifold and the parametrization
of the singular surface, it is straight forward to compute its energy–momentum
tensor using the formalism of Israel. Because it is an illustrating example of how
to use the formalism, I will present a detailed calculation here.

Before we can find Sij , we must know Ki
j on both sides of the shell. To avoid

confusion, we shall calculate them separately.
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Extrinsic curvature in V +

Knowledge of both covariant and contravariant components of the metric tensor
in this region will turn out to be handy. To first order in Ω they are

gtt = β2
S

grr = −β−2
S

gϑϑ = −r2

gϕϕ = −r2 sin2ϑ
gϕt = Ω r2 sin2ϑ

and

gtt = β−2
S

grr = −β2
S

gϑϑ = −r−2

gϕϕ = −(r2 sinϑ)−2

gϕt = Ωβ−2
S

(4.136)

respectively. The contravariant ones are found by matrix inversion. The normal
vector of the surface is

nµ = (0, βS, 0, 0), (4.137)

or, covariantly,
nµ = gµνn

ν = (0,−β−1
S , 0, 0). (4.138)

We will also need some of the Christoffel symbols belonging to the given line
element. These are (as given by Cartan)

Γr
ϑϑ = −rβ2

S (4.139)

Γr
ϕϕ = −rβ2

S sin2ϑ, (4.140)

Γr
tt = β2

S

M

r2
, (4.141)

Γr
ϕt = rβ2

S sin2ϑ
(

Ω +
1

2
rΩ′

)

. (4.142)

Calculating the extrinsic curvature, we find that ni,j = 0, so

K+
ij = −nµΓµ

ij = −β−1
S Γr

ij, (4.143)

whence

K+
ϑϑ = rβS, (4.144)

K+
ϕϕ = rβS sin2ϑ, (4.145)

K+
tt = −βS

M

r2
, (4.146)

K+
ϕt = −rβS sin2ϑ

(

Ω +
1

2
rΩ′

)

, (4.147)

which gives the mixed components

Kϕ
+ϕ = Kϑ

+ϑ = −βS

r
, (4.148)

Kt
+t = −β−1

S

M

r2
, (4.149)

Kϕ
+t =

βS

r

(

Ω +
1

2
rΩ′

)

− ΩM

r2βS

, (4.150)
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when calculating to first order in Ω and its derivatives. What we need is of course
the value of K at the shell, i.e. at r = r0. This gives the above result with r 7→ r0,
Ω 7→ ΩP and Ω′ 7→ −3ΩP/r0 (the value of Ω′ at the outer side of the shell). For
the ϕ

t-component this gives

Kϕ
+t = −ΩP

(

M

r2
0βS0

+
βS0

2r0

)

. (4.151)

Extrinsic curvature in V −

The curvature tensor in V − can be calculated in exactly the same way as in V +.
The components of the metric tensor to first order in Ω are

gtt = aβ2
D

grr = −β−2
D

gϑϑ = −r2

gϕϕ = −r2 sin2ϑ
gϕt = r2 sin2ϑ

and

gtt = (aβ2
D)−1

grr = −β2
D

gϑϑ = −r−2

gϕϕ = −(r sin ϑ)−2

gϕt = Ω(aβ2
D)−1

(4.152)

which together with the unit normal vector

nµ = (0, βD, 0, 0) ⇒ nµ = (0,−β−1
D , 0, 0) (4.153)

and the Christoffel symbols

Γr
ϑϑ = −rβ2

D, (4.154)

Γr
ϕϕ = −rβ2

D sin2ϑ, (4.155)

Γr
tt = −raβ2

D

8πρ

3
, (4.156)

Γr
ϕt = rΩβ2

D sin2ϑ, (4.157)

gives the wanted curvature tensor

K−

ϑϑ = rβD, (4.158)

K−

ϕϕ = rβD sin2ϑ, (4.159)

K−

tt = raβD
8πρ

3
, (4.160)

K−

ϕt = −rΩβD sin2ϑ (4.161)

or, if we raise one index and insert the values at r = r0 (where Ω′ = 0),

Kϕ
−ϕ = Kϑ

−ϑ = −βD0

r0
, (4.162)

Kt
−t =

8πρr0
3βD0

, (4.163)

Kϕ
−t = ΩP

[

βD0

r0
+

8πρr0
3βD0

]

. (4.164)
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The energy–momentum tensor

It is now a simple task to calculate the energy–momentum tensor from equa-
tion (4.105). This results in

St
t =

1

4π
[Kϑ

ϑ] =
βD0 − βS0

4πr0
, (4.165)

Sϕ
ϕ = Sϑ

ϑ =
1

8π

(

[Kt
t] + [Kϑ

ϑ]
)

=
1

2
St

t −
1

8π

(

M

r2
0βS0

+
8πρr0
3βD0

)

, (4.166)

Sϕ
t = − 1

8π
[Kϕ

t] =
ΩP

8π

(

βS0

2r0
+
βD0

r0
− [Kt

t]

)

. (4.167)

Raising the indices of the diagonal components gives

Stt =
βD0 − βS0

4πr0βS
2
0

, (4.168)

Sϑϑ =
βS0 − βD0 + r0

(

M
r2
0βS0

+ 8πρr0

3βD0

)

8πr3
0

, (4.169)

Sϕϕ =
Sϑϑ

sin2ϑ
. (4.170)

We leave the ϕ
t-component while carrying out step four of our procedure, which

shall lead to an alternative version of Sij.

4.4.4 Lichnerowicz’ expression for the energy–momentum
tensor

In order to relate the components of the energy–momentum tensor to the phys-
ical properties of the shell, we may use the expression of Lichnerowicz, equa-
tion (4.110). We need to find the vectors ui and v(k)

i. Here ui is the velocity
vector of the shell:

ui =

(

dt

dτ
,
dϑ

dτ
,
dϕ

dτ

)

along motion

. (4.171)

At the shell dϑ/dτ = 0 and dτ =
√

βS
2
0)dt

2 − r2
0 sin2ϑ(dϕ− ΩP dt)2, which gives

ui = (1, 0, ωs)/
√

βS
2
0 − r2

0 sin2ϑ(ωs − ΩP )2. (4.172)

The two vectors v(k)
i must be chosen so that they are mutually orthogonal, nor-

mal, and orthogonal to ui. It is easy to convince oneself that one of these vectors
may be chosen as

v(1)
i = (0, 1/r0, 0). (4.173)



4.4. The rotating shell revisited 41

The components of v(2)
i are found by solving the simultaneous equations

gijv(2)
iv(2)

j = −1, (4.174)

gijv(2)
iv(1)

j = 0, (4.175)

gijv(2)
iuj = 0. (4.176)

The results are, to first order in Ω:

ui = (1, 0, ωs)/βS0, (4.177)

v(1)
i = (0, 1/r0, 0), (4.178)

v(2)
i = (r0βS

−2
0 (ωs − ΩP ) sinϑ, 0, (r0 sinϑ)−1), (4.179)

which leads to the following expressions for the energy–momentum tensor com-
ponents

Stt = σβS
−2
0 , (4.180)

Sϑϑ =
p(1)

r2
0

, (4.181)

Sϕϕ =
p(2)

r2
0 sin2ϑ

, (4.182)

Sϕt = βS
−2
0

(

(σ + p(2))ωs − p(2)ΩP

)

. (4.183)

4.4.5 The properties of the rotating shell

Comparing Israel’s and Lichnerowicz’ values for the energy–momentum tensor of
the shell, we can find its properties. Looking at Stt, we see that the rest mass
density σ of the shell is given as

σ =
βD0 − βS0

4πr0
= St

t, (4.184)

while Sϑϑ and Sϕϕ give the stresses:

p(1) = p(2) = −σ
2

+
1

8π

(

M

r2
0βS0

+
8πρr0
3βD0

)

(4.185)

= −Sϑ
ϑ = −Sϕ

ϕ.

Using this information, it is easy to raise the lower index of Israel’s Sϕ
t, in order

to obtain

Sϕt = ΩPβS
−2
0

(

σ

2
+

1

8π

(

βS0

2r0
+
βD0

r0

))

. (4.186)

Comparing this with the result we obtained using the expression of Lichnerowicz,
we have an equation relating ωs and ΩP , whoose solution may be written

ΩP

ωs
=

8π(σ + p)

4π(σ + 2p) − (βS0/(2r0) + βD0/r0)
, (4.187)
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or, equivalently,

ΩP

ωs

=
βS0 − βD0

(

1 − 3M
r0

)

βS0 + βD0/2
(4.188)

—a result that has to be checked out against certain special cases.

4.5 Special cases

If the result (4.188) is correct, it has to contain the rotating shell of Brill & Cohen
and the one considered in section 2 of this chapter as special cases. Let us check
this out to assure ourselves that the result is correct.

Putting the shell at r0 = (3M/8πρ)1/3

This special radial position of the shell assures that βS0 = βD0 and that the
components of the metric tensor are continous across the shell. Inserting this
into the previous results, we obtain

ΩP

ωs
=

2M

r0
, (4.189)

σ = 0. (4.190)

(4.191)

We understand that this is a very extreme situation, since the rest mass density
of the shell vanishes. The induced rotation is then a consequence of the stresses
belonging to the shell, and possibly the energy contained by the vacuum in its
interior. The result is exactly the same as the one in section 2 of this chapter,
equation (4.94), which indicates that our result is correct.

Comparing with the result of Brill & Cohen

Brill & Cohen considered a rotating shell with vanishing vacuum energy density
in its interior. Inserting ρ = 0 and βD0 = 1 into our results gives

ΩP

ωs
=
βS0 −

(

1 − 3M
r0

)

βS0 + 1
2

, (4.192)

σ =
1 − βS0

4πr0
. (4.193)

At first glance this doesn’t look much like Brill & Cohen’s result. However,
we must remember that they used isotropic coordinates for the Schwarzschild
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Figur 4.1: Angular dragging velocity in the interior of the shell for different

values of the energy density

geometry, while we have been using the standard ones. Inserting the relation
between them, equation (4.2), into our result gives (after some algebra)

ΩP

ωs

=

(

1 +
3

4M

(r̃0 −M/2)2

r̃0 −M/4

)−1

, (4.194)

which is identical with the result of Brill & Cohen, equation (4.56).
We have thus shown that our result is consistent with the two known special

cases in the interior of the shell. Brill & Cohen’s result is also consistent with the
result of Thirring, whence our result must be so, as well. But, does our result
equal the result of Brill & Cohen outside the shell also? Their result in this region
is

Ω = ΩB

(

r̃0ψ
2
0

r̃ψ2

)3

= ΩB

(

r̃0(1 −M/2r̃0)
2

r̃(1 −M/2r̃)2

)3

= ΩB

(

r0
r

)3

, (4.195)

where the relation between r and r̃ has been inserted. This shows that our result
with ρ = 0 is identical to the result of Brill & Cohen.

In figure 4.1 I have plotted the relative angular dragging velocity for different
energy densities. The lower curve corresponds to ρ = 0. We see that the dragging
velocity is larger for polarized vacuum than for empty space, especially for the
larger r0.
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4.6 Perfect dragging conditions and consequences

An interesting question related to the solution is whether perfect dragging is
possible, i.e. whether the induced rotation in the interior of the shell can equal
the angular velocity of the shell. Brill & Cohen found that in their case perfect
dragging occured for r0 = 2M , but we will show here that this is an unphysical
situation.

First, we observe that the induced velocity may be written

ΩP

ωs
= 1 − 3βD0βS

2
0

2βS0 + βD0

≡ 1 −B. (4.196)

For M ≥ 0 and ρ ≥ 0 we must have B ≥ 0 and ΩP/ωs ≤ 1, i.e. we cannot have
over -perfect dragging.

Perfect dragging occurs only when B = 0, which in turn can be the case

only if r0 = 2M or r0 =
√

3/(8πρ). Let us calculate the properties of the shell
corresponding to these two special cases.

r0 = 2M ⇒ σ =
βD0

4πr0
, (4.197)

p→ +∞, (4.198)

r0 =

√

3

8πρ
⇒ σ = − βS0

4πr0
, (4.199)

p→ +∞. (4.200)

In both cases the stresses of the shell diverge, and the situations must be consid-
ered unphysical.

We also see that the last case leads to a negative energy density σ, as mea-
sured by an observer at rest in the coordinate system. This is as unphysical as
anything, and we must find out when this can happen. The expression for σ,
equation (4.184), shows that we must have βD0 > βS0, or

r0 ≤
(

3M

4πρ

)1/3

(4.201)

in order to assure that σ ≥ 0. The limiting case (with equality in (4.201)) is
exactly the one considered in section 2 of this chapter. This is yet another reason
that this case was a very special one.

From this discussion it is clear that perfect dragging by a stationary shell
cannot occur in a situation which resembles anything in the “real world.”

4.7 Does the vacuum rotate?

We have found that the existence of polarized vacuum in the interior of the shell
affects the magnitude of the induced rotation. It is then natural to ask what the
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reason for this change is. It is not only the energy density ρ which is different
in the two cases. In both cases the shell was constructed so that the situation
should be static. In other words we had to change its rest mass density and the
stresses to be able to ‘insert’ the vacuum energy. What is then the reason for the
change in induced rotation inside the shell: the polarized vacuum or the shell?

It is reasonable to guess that both the shell and the vacuum give a contribution
to the change in the induced rotation in the interior of the shell, i.e. if we introduce

∆Ω0 ≡ ΩP − ΩB, (4.202)

we assume that it may be written as

∆Ω0 = (∆Ω0)shell + (∆Ω0)vacuum. (4.203)

What really interests us is the contribution (if any) given by the polarized
vacuum. If we shall be able to exhibit the effects of the vacuum, we must look
at the situation where the shell has the same properties as in the Brill & Cohen
case, while there is polarized vacuum in its interior. In this situation the shell
will not be stationary because of the repulsive gravity of the polarized vacuum in
its interior. However, at one instant of time the radial velocity of the shell may
vanish. Let this instant be at a point of time t0, and the radial position of the
shell r0(t0).

Since r0 = r0(t), all constants of the previous discussion must be time depen-
dent. We may try with a line element of the form

ds2 = g(r)dt2 − dr2

f(r)
− r2

(

dϑ2 + sin2ϑ(dϕ− Ω(r, t)dt)2
)

, (4.204)

f(r) =

{

1 − 8πρr2/3 for r < r0(t)
1 − 2M/r for r > r0

, (4.205)

g(r) =

{

a(t)(1 − 8πρr2/3) for r < r0(t)
1 − 2M/r for r > r0(t)

, (4.206)

a(t) =
1 − 2M/r0(t)

1 − 8πρr0(t)2/3
. (4.207)

This ansatz gives the same Einstein tensor as before, except that

G1
3 =

r sin ϑ(ȧΩ′ − 2aΩ̇′)

4βDa2
, (4.208)

G3
4 = −βD sinϑ(4Ω′ + rΩ′′)

2
√
a

. (4.209)

Here the dot denotes differentiation with respect to time, and the prime denotes
differentiation with respect to r.
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Suppose now that the induced rotation, Ω may be factorized

Ω(r, t) = Ω̃(r)h(t). (4.210)

The equations corresponding to G1
3 = G3

4 = 0 then reads

4Ω̃′ + rΩ̃′′ = 0, (4.211)

ȧh− 2aḣ = 0. (4.212)

The first one is solved by Ω̃ = A/r3 +B, while the second gives h = Ca2, where
A, B and C are constants of integration. Hence the induced rotation is

Ω = Ca(t)2
(

A

r3
+B

)

. (4.213)

In order to obtain nice behaviour at r → ∞ and r → 0, and continuity across
the shell, we must have Ω = Ω0(t) inside the shell, and B = 0 outside. Hence

Ω =

{

Ω0(r0/r)
3 for r > r0

Ω0 for r < r0
, (4.214)

where Ω0 and r0 are functions of t. The value of Ω0 at t0 (when the shell is at
rest), is denoted ΩP/B. The ‘P/B’ suggests a rotating shell containing polarized
vacuum, and that the shell has Brill & Cohen properies. Using Israel’s formalism
to calculate the extrinsic curvature of the shell, we arrive at the same expressions
as earlier, except that time dependent functions have taken the places of r0 and
ΩB.

Because the radial velocity of the shell vanishes at t0, its energy–momentum
tensor is, like before,

Stt = σβS
−2
0 , (4.215)

Sϑϑ =
p

r2
0

, (4.216)

Sϕϕ =
p

r2
0 sin2ϑ

, (4.217)

Sϕt = βS
−2
0 ((σ + p)ωs − pΩP ) , (4.218)

where σ and p have the same values as the ones describing the shell of Brill &
Cohen:

σ =
1 − βS0

4πr0
, (4.219)

p = −σ
2

+
M

8πr2
0βS0

. (4.220)
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Now the ϕt-component of the energy–momentum tensor for the shell as ob-
tained by Israel’s formalism may be written

Sϕt =
ΩP/B

8πr0βS
2
0

(2βD0 − βS0/2). (4.221)

Inserting this into the above expression gives

ΩP/B

ωs
=

βS0 − (1 − 3M/r0)

(2βD0 − 1)βS0 + 1/2
. (4.222)

This is the dragging velocity of a rotating Brill & Cohen-shell containing polarized
vacuum. If we let the energy density ρ vanish, we should arrive at the result of
Brill & Cohen again. We see that this actually is the case, since this means that
βD0 = 1, whence 2βD0 − 1 = 1. Notice that perfect dragging occurs for r0 = 2M ,
but again the stresses p, diverge.

Actually, 2βD0 − 1 ≤ 1 always, which shows that the dragging velocity of the
shell containing polarized vacuum always is greater than that of the empty shell.
This is a strong indication that both the shell and the vacuum contribute to the
inertial dragging. But, if the vacuum itself gives rise to inertial dragging effects,
it must be moving!

Critical examination of ΩP/B.

There is however one problem associated with the induced dragging velocity (4.222).
According to this solution it is possible to obtain more than perfect dragging, i.e.

it is possible to have ΩP/B/ωs > 1. We don’t want this situation to be achievable,
so let us examine where this happens.

There are some restrictions on the radial position of the shell, namely that
the βs have to be real. This means that we have to restrict ourselves to

2M ≤ r0 ≤
√

3

8πρ
, (4.223)

which again gives a restriction on ρ and M :
√

3/(8πρ) ≥ 2M .

Introduce now the scaled parametres x = r0/M and y = 8πρM2/3. The
induced angular velocity in the interior of the shell may then be written

ΩP/B

ωs

=

√

1 − 2/x− (1 − 3/x)
(

2
√

1 − yx2 − 1
)√

1 − 2/x+ 1/2
, (4.224)

and the above restriction on the radius of the shell is

2 ≤ x ≤ y−1/2. (4.225)
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Figur 4.2: Angular dragging velocity for a Brill & Cohen-shell containing

polarized vacuum

It is now easy to see that perfect dragging occurs for

y =
3(6 − 3x+ 8x

√

1 − 2/x)

16x3
, (4.226)

and that we have an unphysical situation for y larger than this value.
Figure 4.2 shows ΩP/B/ωs as a function of x and y in the legal region. We see

that over-perfect dragging occurs. In figure 4.3 the perfect dragging line, where
ΩP/B/ωs = 1, and the boundary of the region, x = y−1/2 (representing the de
Sitter horizon), are plotted in the (x, y)-plane. It is in the region between these
two curves over-perfect dragging occurs. As x→ ∞ or r0 ≫ 2M the two curves
converge.

We must now ask whether it is possible to have situations where this unphys-
ical phenomenon is present. We see that it occurs for y

∼
> 0.1 (and for y very

near the critical value). This means that

8πρM2

3
∼
> 0.1 (4.227)

or

ρ
∼
>

3

80πM2

∼
>

1

100M2
. (4.228)

Restoring the numerical factors c and G, we obtain

ρ
∼
>

c2

100M2G3

∼
> 1080 kg/m3

(

1 kg

M

)2

. (4.229)
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Figur 4.3: Perfect and over-perfect dragging

How large energy density is this? The so-called GUT-energy density, the one
expected to be present at the beginning of the inflationary era, is approximately

ρ ∼ 1079 kg/m3. (4.230)

Hence, it is in theory possible to obtain energies large enough to achieve the
unphysical over-perfect dragging effect. However, for small and thin shells (those
considered here), the factor 1 kg/M becomes very large, and the situation will stay
physical. Remember also thatM is the gravitational mass of the spherical system,
not the rest mass of the shell. In the cases considered here, the gravitational
mass of the system will be smaller than the rest mass of the shell, because of the
negative contribution of the vacuum energy inside the shell.

A spherical shell is often taken as a simplified cosmological model for our
universe. At the present time we know that the universe is matter dominated,
whence

ρ≪ ρmatter ∼ 10−26 kg/m3. (4.231)

According to (4.229) the spherical system must have an enormous gravitational
mass in order to obtain over-perfect dragging:

ρmatter ≫ ρ ∼ 1080 kg/m3

(

1 kg

Mcritical

)2

(4.232)

⇒ Mcritical ≫ ρ
−1/2
matter · 1040 kg3/2m−3/2 ∼ 1053 kg. (4.233)

As an estimate for the gravitating mass of the observable universe we may take

Muniverse ∼
4

3
πR3

universe ρmatter (4.234)
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where the radius is taken to be the age of the universe (1010 years) times the
speed of light:

Muniverse ∼ 1052 kg. (4.235)

Hence over-perfect dragging is impossible for this cosmological model.
It is therefore reasonable to argue that the above results are correct to a

certain degree, and that the vacuum contributes to the dragging effects. The
rotation of the vacuum can therefore be inferred by an observer because of its
dragging properties. This is surprising since the motion of the vacuum cannot be
detected directly because of its Lorenz-invariance.
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