next up previous
Next: Experimental Results and Discussion Up: Feature Extraction Previous: Eigenfeatures

Gabor Wavelets

Similar to the system of Lades et al. [5], we apply a wavelet transform based on the Gabor kernel

 \begin{displaymath}\psi_{j}(\vec{x}) = \frac{k_{j}^{2}}{\sigma^{2}}
e^{-\frac{k_...
...iggl(e^{i\vec{k}_{j}\vec{x}}-e^{-\frac{\sigma^{2}}{2}}\biggr),
\end{displaymath} (1)

where

 \begin{displaymath}\vec{k}_{j}=\binom{k_{\nu}\cos\phi_{\mu}}{k_{\nu}\sin\phi_{\m...
...{-\frac{\nu+2}{2}}\pi,\thickspace
\phi_{\mu}=\mu\frac{\pi}{8}.
\end{displaymath} (2)

All the Gabor wavelets are created from this kernel by dilation and rotation. The 40 wavelets created from indices $\nu\in\{0,...,4\}$ (size) and $\mu\in\{0,...,7\}$ (orientation) are shown in figure 4. These wavelets are convolved with the image, and we keep the value of the center pixel. This provides us with a feature vector of 80 complex coefficients, but we only keep the amplitudes for classification.


  
Figure 4: The Gabor wavelets.
\begin{figure}\begin{center}
\epsfig{file=gabor.ps,width=6.7cm}
\end{center}\end{figure}



Erik Hjelmås
1999-01-21